
Infinity Groupoids as Models for Homotopy Types

David Martínez Carpena

Supervisor: Carles Casacuberta Vergés

Master in Advanced Mathematics

Universitat de Barcelona

September 17, 2021

1 / 23



Contents

1 Objectives

2 Topological models of ∞-groupoids

3 Proof of the main theorem

4 Application to homotopy type theory

2 / 23



Objectives

Study topological categories as a model of ∞-categories.

Prove that Moore path categories are a model of the
fundamental ∞-groupoid of a topological space.

Prove that the coherent nerve of an ∞-groupoid is equivalent
to the classical nerve of the associated topological category.

Assess whether the model of Moore path categories can help to
interpret results from homotopy type theory.
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Higher categories

Historically, there have been many definitions for ∞-categories,
and each one is considered a model of higher homotopy.

I Globular models (Batanin, Berger, etc.).
I Quasi-categories (Joyal, Lurie).
I Topologically enriched categories (Bergner, Lurie, etc.).

An ∞-groupoid is an ∞-category whose n-morphisms are
invertible up to (n + 1)-morphisms, for all n ≥ 1.

Grothendieck’s homotopy hypothesis states that, for each
topological space X , the fundamental ∞-groupoid Π∞(X )
encodes the homotopical structure of X .
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Topological categories

A topological category is a category enriched over the category
of (compactly generated) topological spaces.

For every topological category C, the homotopy category hC
has the same objects as C and hC(X ,Y ) = π0(C(X ,Y )).

A topological category C is an ∞-groupoid if hC is a groupoid.
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Homotopy hypothesis

Top sSetQ sSetJ sSet-Cat Top-Cat
Singe

|·|e

The geometric realization | · | and the singular simplicial set
Sing form a Quillen equivalence.
The enriched geometric realization | · |e and the enriched
singular simplicial set Singe form a Quillen equivalence.
The simplicial path C and the homotopy coherent nerve N<
form a Quillen equivalence.
The functors k! and k ! are restriction and induction of a
localization adjunction between the Joyal and Quillen model
structures.

Top sSetQ ∞-Grpd.
|·|

Sing k ! ◦N< ◦Singe

|·|e ◦C ◦ k!
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Nerve and realization: Homotopy coherent nerve

There is a cosimplicial object defined for each [n] ∈ ∆ as the
simplicial category ∆<[n] with:

Obj(∆<[n]) = [n] = {0, . . . , n}
For every i , j ∈ Obj(∆<[n]), Hom(i , j) = (∆[1])(j−i−1)

The homotopy coherent nerve N< : sSet-Cat→ sSet is defined for
every C ∈ sSet-Cat as

N<n (C) = sSet-Cat(∆<[n], C).

The simplicial path C : sSet→ sSet-Cat is defined for every
X ∈ sSet as

C(X ) =
∫ [n]∈∆

Xn ⊗∆<[n].
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Moore path categories

For each topological space X , define the Moore path category
ΠM
∞(X ) as the ∞-grupoid such that:

The objects are points of X .

Each homset ΠM
∞(X )(x , y) is equal to

PM
x ,y X = {(f , r) ∈ XR+ × R+ | f (0) = x and f (s) = y ∀s ≥ r}.

The composition is defined by

◦ : PM
x ,y X × PM

y ,zX −→ PM
x ,zX

((f , r), (g , s)) 7−→ (f ∗ g , r + s)

(f ∗ g)(t) =
{

f (t) if 0 ≤ t < r
g(t − r) if t ≥ r
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The fundamental ∞-groupoid as a Moore path category

Let ΩM
x (X ) be the group-like topological monoid defined as PM

x ,xX .
The delooping functor D : tMon→ Top-Cat0 sends M ∈ tMon to
the topological category with one object ∗ and Hom(∗, ∗) = M.

Main Theorem
Let (X , x) be a path-connected well-pointed topological space. The
topological space |N<(Singe(DΩM

x (X )))| is a classifying space for
ΩM

x (X ) and, as a consequence,

|N<(Singe(DΩMX ))| ' X .

Hence, the ∞-groupoid ΠM
∞(X ) is weakly homotopy equivalent to

the ∞-groupoid (| · |e ◦ C ◦ k! ◦ Sing)(X ).
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Milgram classifying space

A classifying space B(G) of a topological group G is a quotient of a
weakly contractible space E(G) by a proper free action of G .

The topological nerve Nt : Top-Cat0 → sTop0 is the functor that
sends DM ∈ Top-Cat0 with Hom(∗, ∗) = M to the simplicial set
with Nt

0(DM) = ∗ and Nt
n(DM) = Mn.

The topological geometric realization | · |t : sTop→ Top is the
functor that sends a simplicial space X to

|X |t =
∫ [n]∈∆

Xn ×∆n.

Milgram defined a functorial classifying space B(M) for every
topological group-like monoid M, which is equivalent to

B(M) = |Nt(DM)|t .
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Observations about the Main Theorem

Main Theorem
Let (X , x) be a path-connected well-pointed topological space. The
topological space |N<(Singe(DΩM

x (X )))| is a classifying space for
ΩM

x (X ) and, as a consequence,

|N<(Singe(DΩMX ))| ' X .

Let (X , x) be a path-connected pointed topological space. Then,
there is a natural weak homotopy equivalence

B(ΩM
x X ) ' X .

It is enough to show that,

|N<(Singe(DΩM
x X ))| ' B(ΩM

x X ) = |Nt(DΩM
x X )|t .
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Diagonal simplicial nerve

There is a cosimplicial object defined for each [n] ∈ ∆ as the
simplicial category ∆d [n] with:

Obj(∆d [n]) = [n].
Morphisms of ∆d [n] are freely generated by the n-simplices
ai ∈ Hom(i − 1, i) for all i = 1, . . . , n.

The diagonal simplicial nerve Nd : sSet-Cat→ sSet is the functor
that sends any simplicial category C to

Nd
n (C) = sSet-Cat(∆d [n], C),

and can be factorized as

sSet bSet

sSet-Cat

d
Nd

N` ◦ I
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Idea of the proof I

To prove the main theorem, it is enough to prove

|N<(Singe(DM))| ?' |Nt(DM)|t

Top

sSet0 bSet0 sTop0

sSet-Cat0 Top-Cat0 tMon

|·|t

Nt

DSinge
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Idea of the proof II

Goal: For every topological group-like monoid M,

Nd (Singe(DM)) ?' N<(Singe(DM)).

We can divide this statement into two subgoals:
Proving that, for any strict simplicial groupoid G,

Nd (G) ?' N<(G).

Using simplicial localization to transfer this result to weak
simplicial groupoids, i.e., any fibrant simplicial category C with
hC a groupoid.
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Total simplicial nerve

There is a cosimplicial object defined for each [n] ∈ ∆ as the
simplicial category ∆T [n] with:

Obj(∆T [n]) = [n].
Morphisms of ∆T [n] are freely generated by (n − i)-simplices
gi ∈ Hom(i − 1, i) for i = 1, . . . , n.

The total simplicial nerve NT : sSet-Cat→ sSet is defined for
every C ∈ sSet-Cat as

NT
n (C) = sSet-Cat(∆T [n], C).

Theorem (Hinich 2015)

For any strict simplicial groupoid G, Nd (G) ' NT (G) ' N<(G).
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NT
n (C) = sSet-Cat(∆T [n], C).

Theorem (Hinich 2015)

For any strict simplicial groupoid G, Nd (G) ' NT (G) ' N<(G).
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Homotopy type theory

Dependent type theory was introduced by Martin-Löf in the 1970s,
based on work of Russell, Church, and others.

In 2009, Awodey and Warren provided a homotopical interpretation
of Martin-Löf type theory. Also around that time, Voevodsky
explored the addition of the univalence axiom to homotopical
interpretations based on simplicial sets.

Homotopy type theory embraces the homotopical interpretation of
type theory, adding the univalence axiom and higher inductive types.

Any result developed inside homotopy type theory can be
formalized and checked using computer software.
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Dependent type theory

Type theory is a deductive system based on judgements and rules of
inference. The judgements are:

` A type ` a : A ` a = b ` A = B

Any judgement can have type dependency. For example, a family B
indexed by A is the judgement x : A ` B(x) type.

Any rule of inference has a finite set of judgements as assumptions,
and a unique judgement as conclusion. Any type is defined by a set
of rules, which shows how to use it.

Many types resemble common mathematical constructions, for
example functions A→ B, products A× B, sum type A + B, and
the natural numbers N.
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Identity types

A type is inductive if it can be defined as a free construction from a
set of generators, with the generators being elements or functions.

The identity type IdA(a, b) serves as a logical equality, and it is the
inductive type with generators refla : IdA(a, a) for every a : A.

We can consider identity types of identity types, and so on
recursively, which creates a higher dimensional structure for
every type with a weakly associative composition and a weak
inverse.
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Interpretation

Category theory Type theory

Fibrant object A Type declaration A type
Fibration B → A Dependent family x : A ` B(x) type
Global section 1→ A Term x : A
Product A× B Product A× B
Coproduct A t B Sum A + B
Exponential object AB Function A→ B
Path object Path(A)→ A× A Identity type a, b : A ` IdA(a, b)

19 / 23



Higher inductive types

Higher inductive types extend the idea of inductive types, allowing
us to use elements or functions on the identity types as generators.

base : S1

loop : IdS1 (base, base)

b : T2

p : IdT2 (b, b)

q : IdT2 (b, b)

t : IdIdT2 (b,b)(p · q, q · p)
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Using Moore path categories

ΠM
∞(Ã) A∐

x̄ ,ȳ∈Ã

ΠM
∞(PM

x̄ ,ȳ Ã)
∑

x ,y :A
Id(x , y)

∐
x̄ ,ȳ∈Ã

∐
p̄1,q̄1∈PM

x̄,ȳ Ã

ΠM
∞(PM

p̄1,q̄1(PM
x̄ ,ȳ Ã))

∑
x ,y :A

∑
p1,q1:Id(x ,y)

Id(p1, q1)

...
...

The interpretation of the type-theoretic circle and the type-theoretic
torus have the same homotopy types as the fundamental
∞-groupoids of the circle and the torus.
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Future research

Further research is needed for studying other cases like the Klein
bottle or the real projective spaces:

b : K.

p : IdK(b, b)

q : IdK(b, b)

t : IdIdK(b,b)(p · q, q · p91)

b : RP2

p : IdRP2 (b, b)

t : IdIdRP2 (b,b)(p, p91)
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