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Abstract

In higher category theory, ∞-groupoids are ∞-categories whose morphisms are weakly
invertible at all orders. Every topological space has an associated ∞-groupoid, named its
fundamental ∞-groupoid, which encodes the information of higher paths over the space.
The statement that every space can be recovered up to homotopy from its fundamental
∞-groupoid is known as Grothendieck’s homotopy hypothesis. In this thesis, we choose a
model of ∞-categories based on topologically enriched categories, and discuss the homotopy
hypothesis in this context, as well as a model of the fundamental ∞-groupoid based on
Moore path categories.

The core result in our work is that the coherent nerve of an ∞-groupoid is equivalent to
the classical nerve of the associated topologically enriched category. We provide a detailed
proof of this fact since we have not found it in the literature.

As an application, we assess whether the model of the fundamental ∞-groupoid based on
Moore path categories is useful in the higher-categorical interpretation of homotopy type
theory, a field of mathematical logic which relates Martin-Löf’s type theory with the study
of ∞-groupoids. Homotopy type theory allows the formalization of homotopical results in
computer proof assistants.
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Introduction

In higher category theory, one considers categories with not only morphisms between
objects, but generally n-morphisms between (n− 1)-morphisms for all n ≥ 1. Historically,
there have been many definitions for ∞-categories, and each one is considered a model of
higher homotopy. The higher categories studied in this thesis are the ∞-groupoids, whose
n-morphisms are “weakly invertible” for all n ≥ 1. The most popular model for higher
categories is based on simplicial sets satisfying a weak Kan condition. It was pioneered by
Joyal and developed by Lurie [Lur09]. In this work, we analyze an alternative model studied
by Lurie [Lur09] and Amrani [Amr13], which is based on topologically enriched categories.

In fact, higher category theory and homotopy theory are closely related. For each
topological space X, we can build an ∞-groupoid called fundamental ∞-groupoid Π∞(X),
which encodes the homotopical structure of the higher paths over X. More specifically,
Π∞(X) has as objects the points of X, as 1-morphisms the paths on X, as 2-morphisms the
homotopies between paths, and so on recursively. The idea of the fundamental ∞-groupoid
was originally drafted by Grothendieck, who thought that the study of ∞-groupoids should
be “equivalent” to the study of homotopy types of topological spaces. This statement became
known as the homotopy hypothesis. Indeed, it needs to be reformulated for each model of
∞-groupoids, and it is a tautology in some cases, so it cannot be treated as a conjecture.

The homotopy hypothesis depends on a suitable definition of equivalence between ∞-
groupoids and topological spaces. Suppose that we have a model structure over topological
spaces and another one over some category of ∞-groupoids. Then, it turns out that the
notion of a zigzag of Quillen equivalences between model categories is well suited to represent
such an “equivalence”, because it proves that the homotopical structures induced by the model
categories are equivalent. In the first chapter, we review the language of model categories,
adjunctions and Quillen equivalences. We also recap the model structures over topological
spaces and simplicial sets, and a Quillen equivalence between these categories. In addition,
we develop a generalization of the usual adjunction between topological spaces and simplicial
sets, called the nerve and realization pattern. This pattern allows us to define an adjunction
from simplicial sets to other categories using a suitable cosimplicial object, and it will be
used to define all the adjunctions used in the rest of this work.

In the second chapter, we prove that topologically enriched categories offer a convenient
model for ∞-groupoids, thanks to its inherent strict composition. This will be accomplished
by proving the homotopy hypothesis associated with this model. In the literature, it is well-
known that there is a Quillen equivalence between simplicial sets and simplicially enriched
categories [Lur09], through a functor named homotopy coherent nerve and defined using
the nerve and realization pattern. The origins of this functor go back to work of Boardman
and Vogt [BV73], and Cordier [Cor82]. The proof of the homotopy hypothesis associated to
topologically enriched categories extends the Quillen equivalence generated by the homotopy
coherent nerve. Our main references have been [Amr11] and [McG20].
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2 Introduction

The final section of the second chapter tackles the problem of computing the fundamental
∞-groupoid of a topological space, by presenting Moore path categories. For every topological
space X and every two points x, y ∈ X, we can consider the set of all paths between x and
y, called path space Px,yX. This space has a weakly associative composition, weak unit and
weak inverses. But we can make them “strict” by considering the homotopically equivalent
Moore path space:

PMx,yX = {(f, r) ∈ XR+ × R+ | f(0) = x and f(s) = y ∀s ≥ r}.

The Moore path space has strict associative composition and strict unit, but weak inverses.
In particular, when taking the same points as source and target, the Moore path space PMx,xX
is a topological monoid, which is usually denoted by ΩMx X.

The Moore path category of a space X is a topologically enriched category with objects
the points of X and as homsets the Moore path spaces. The name of Moore path category
was pioneered by Brown [Bro09]. The Bachelor’s thesis of McGarry [McG20] ends by proving
that the Moore path category models the fundamental∞-groupoid. In this thesis, we provide
a different proof. The proof from McGarry depends on a proposition of an article by Rivera
and Zeinalian [RZ18], which itself depends on a claim without reference about an alternative
classifying space of ΩMx X based on the homotopy coherent nerve. Because we have not found
any reference in the literature proving this claim, we decided to write our own proof, which is
developed in the third chapter. Using this claim, we finish the second chapter by presenting
a direct proof of the fact that the Moore path category models the fundamental ∞-groupoid.

A classifying space B(G) of a topological group G is defined as the quotient of a weakly
contractible space E(G) by a proper free action of G. Any classifying space of a group has the
universal property that for every topological space X there is a bijection between homotopy
classes of maps X → B(G) and isomorphism classes of G-bundles over X. The third chapter
is devoted to reviewing the theory of classifying spaces, and then proving the existence of
an alternative classifying space of ΩMx X based on the homotopy coherent nerve. The proof
presented here is novel work, but uses ideas from the literature. In particular, the last part
of the argument was inspired on an article by Hinich [Hin07].

The last chapter of this thesis puts into perspective the model of the fundamental ∞-
groupoid as a Moore path category in the field of homotopy type theory. Homotopy type
theory [Uni13] is a refinement of Martin-Löf type theory based on the interpretation of types
as ∞-groupoids [AW09; BG10; Lum09]. Any result developed inside homotopy type theory
can be formalized and checked using computer software. The choice of a suitable model of
∞-groupoids is essential to translate theories formalized inside type theory to homotopy
theoretic results. One of the innovations of homotopy type theory is the introduction of
higher inductive types as a tool for freely generating the higher structure of a type by a set
of generators. In particular, higher inductive types can be used to generate types with a
higher structure inspired by the fundamental ∞-groupoid of some topological space. With
this technique, we can obtain type theoretic versions of common finite CW-complexes such
as the circle or the torus. However, confirming that the resulting higher inductive types
actually realize the fundamental ∞-groupoid of the original topological space is still an
open problem. In this last chapter, using the explicit structure of Moore path categories
and the interpretation of homotopy type theory in model categories by van den Berg and
Garner [BG12], we show that the type theoretic circle and torus actually correspond to the
∞-groupoids associated with the topological version of these structures. An extension of this
result to other finite CW-complexes is a future project.



Chapter 1

Preliminaries about model
categories

This chapter is devoted to summarizing well-known concepts about model categories.
Subsequent chapters will use these ideas as foundations. The first section introduces model
categories, and presents some basic properties. In the second one, adjunctions and Quillen
equivalences are presented and discussed. In the third one, we introduce a model structure
over the category of topological spaces, and several classical homotopical constructions.
Finally, we present simplicial sets as a tool for approaching the higher categorical contents
of the subsequent chapters. During the rest of this work, basic knowledge about category
theory will be assumed. For details of categorical concepts, see [Lan78].

1.1 Model categories
In this section, we review a modern definition of model categories, following [Hov07]. The

concept appeared originally in works of Quillen [Qui67]. To understand the definition, we
first need to set out some preliminary concepts.

An object A of C is a retract of another object B if there are morphisms i : A→ B and
r : B → A such that r ◦ i = IdA. On the other hand, a morphism f : A→ B is a retract of
another g : C → D if and only if there is a commutative diagram of the form

A C A

B D B

f g f

where the horizontal composites are identities.
Let C be any category, f : A→ B and g : C → D two morphisms from C. We say that

f has the left lifting property (LLP) with respect to g, or equivalently that g has the right
lifting property (RLP) with respect to f , if for every pair of morphisms u : A → C and
v : B → D such that g ◦ u = v ◦ f , there exists a morphism α : B → C making the following
diagram commute:

A C

B D

f

u

v

gα

3



4 Preliminaries about model categories

The last preliminary is an addition to the original definition of Quillen, which has become
a convention in modern texts. A functorial factorization on C is a map denoted (E,α, β)
from every morphism f : A → B to an object E(f) and a pair of composable morphisms
α(f) : A → E(f) and β(f) : E(f) → B such that f = β(f) ◦ α(f) and for every other
morphism g : C → D with a commutative square

A C

B D

f

u

v

g

there exists a morphism H(u, v) natural in both variables such that the following diagram
commutes:

A C

E(f) E(g)

B D

u

v

H(u,v)

α(f)

β(f)

α(g)

β(g)

Definition 1.1.1. A model structure over a category C is composed of three distinguished
classes of morphisms: weak equivalences ( ∼−→), fibrations (−�), and cofibrations (↪−→), such
that the following conditions hold:

1. All three classes contain all isomorphisms.
2. All three classes are closed under composition and under retracts.
3. The class of weak equivalences satisfies the two-out-of-three property: for any pair

of morphisms f : A → B and g : B → C such that two of f , g or g ◦ f are weak
equivalences, then the third is also a weak equivalence.

4. Any trivial cofibration (a cofibration which is also a weak equivalence) has the LLP
with respect to any fibration. Conversely, any trivial fibration (a fibration which is also
a weak equivalence) has the RLP with respect to any cofibration.

5. There exist two functorial factorizations (E,α, β) and (F, γ, δ) such that for any
morphism f : A→ B, α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a trivial
cofibration and δ(f) is a fibration.

Then, a model category is a complete and cocomplete category C equipped with a model
structure.

Let C be a model category. Because C is complete and cocomplete, in particular it always
has an initial object ∅ and a terminal one ∗. Then, an object A of C is fibrant if the unique
morphism A → ∗ is a fibration. Dually, an object A is cofibrant if the unique morphism
∅→ A is a cofibration. Furthermore, we will denote by Cf , Cc and Ccf the full subcategories
of fibrant objects, cofibrant objects, and fibrant and cofibrant objects, respectively.

Applying the first functorial factorization (E,α, β) to the unique morphism ιA : ∅→ A
we obtain a cofibration α(ιA) : ∅→ E(ιA), and a trivial fibration β(ιA) : E(ιA)→ A. Then,
there exists a cofibrant replacement functor A 7→ QA defined by QA := E(ιA) such that QA
is a cofibrant object and there is a natural transformation qA := β(ιA) : QA→ A which is a
trivial fibration. Dually, we can use (F, γ, δ) and τA : A→ ∗ to define a fibrant replacement
functor A 7→ RA such that RA := F (τA) is fibrant and there is a natural transformation
rA := γ(τA) : A→ RA which is a trivial cofibration.
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Remark 1.1.2. Let A be a fibrant object of a model category, with its associated fibration
τA : A→ ∗. Applying the cofibrant replacement we obtain QA which is cofibrant and has
a trivial fibration qA : QA → A. Then, the composition of fibrations τA ◦ qA : QA → ∗
must be a fibration by the axioms of the model structure. Therefore, applying the cofibrant
replacement to a fibrant object produces an object which is fibrant and cofibrant. The dual
of this result follows by the same argument.

Let A be an object in a model category C, and A q A (resp. A × A) be the coproduct
(resp. product) of A with itself. Then, consider the fold map as the morphism AqA→ A,
defined with the universal property of the coproduct applied to the identity IdA. Dually,
define the diagonal as the morphism A→ A×A, defined with the universal property of the
product applied to the identity IdA.

Definition 1.1.3. Let C be a model category, and f, g : A→ B two morphisms in C.

(i) A cylinder object Cyl(A) for A is a factorization of the fold map of A into a cofibration
i0 + i1 : AqA→ Cyl(A) followed by a weak equivalence Cyl(A)→ A.

(ii) A path object Path(B) for B is a factorization of the diagonal map of B into a weak
equivalence B → Path(B) followed by a fibration (p0, p1) : Path(B)→ B ×B.

(iii) A left homotopy from f to g is a map H : Cyl(A)→ B for some cylinder object Cyl(A)
for A such that H ◦ i0 = f and H ◦ i1 = g. Furthermore, f and g are left homotopic,
denoted f l∼ g, if there is a left homotopy from f to g.

(iv) A right homotopy from f to g is a morphism K : A→ Path(B) for some path object
Path(B) for B such that p0 ◦K = f and p1 ◦K = g. Furthermore, f and g are right
homotopic, denoted f r∼ g, if there is a right homotopy from f to g.

(v) The morphisms f and g are homotopic, denoted f ∼ g, if they are both left and right
homotopic. Furthermore, f is a homotopy equivalence if there is a map h : B → A such
that h ◦ f ∼ IdA and f ◦ h ∼ IdB .

Observe that due to the functorial factorizations, we can obtain a functorial cylinder
(resp. path) object as a factorization of the fold (resp. diagonal) map. Also, when A is
cofibrant and B is fibrant, the left and right homotopy relations coincide in C(A,B) and are
equivalence relations (see the Whitehead Theorem [GJ09, Theorem 1.10]). Thanks to this
fact, the following construction is well-defined:

Definition 1.1.4. Let C be a model category. Define the homotopy category Ho(C) as the
category with:

• The objects of Ho(C) are the ones from C that are both fibrant and cofibrant.

• For any two objects A and B of Ho(C), define Ho(C)(A,B) := [A,B], where the
brackets denote the homotopy classes of C(A,B).

• For any morphisms [f ] ∈ Ho(C)(A,B) and [g] ∈ Ho(C)(B,C), the composition is
defined as [g] ◦ [f ] := [g ◦ f ] ∈ Ho(C)(A,C).

• For every object A ∈ Ho(C), the identity element is [IdA] ∈ Ho(C)(A,A).
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The homotopy category has another equivalent definition which only depends on the
class of weak equivalences. Define the localization C[W−1] of a category C at a class of
morphisms W as the formal inversion of all the morphisms of W . In general, this definition
of localization has some set-theoretical difficulties: if W is a proper class, the localization
can be a “large” category, in the sense of not being locally small. In the case of W being
the class of weak equivalences, it can be proven that there is an equivalence of categories
between Ho(C) and C[W−1] (for details, see [Hov07, Section 1.2]). This equivalence proves
that C[W−1] is well-defined as a locally small category when taking C to be a model category
and W the weak equivalences.

1.2 Adjunctions and Quillen equivalences

In this section, a short introduction to the well-known theory of adjunctions and Quillen
equivalences is offered. The proofs and details of the results about adjunctions can be found
with modern notation in [Rie16].

Definition 1.2.1. An adjunction between two categories C and D is a pair of functors
F : C → D and G : D → C such that there is a natural bijection D(FA,B) ∼= C(A,GB) for
every A ∈ C and B ∈ D. We call F the left adjoint to G and G the right adjoint to F , and
also denote the adjunction by the following notation:

F : C � D : G.

Proposition 1.2.2. Let F : C � D : G be an adjunction. Then, there are:

(i) A natural transformation η : IdC ⇒ GF called unit of the adjunction, whose component
ηA : A→ GFA at A ∈ C is defined as the image of the identity morphism IdFA through
the natural bijection of the adjunction.

(ii) A natural transformation ε : FG⇒ IdD called counit of the adjunction, whose compo-
nent εA : FGA→ A at A ∈ D is defined as the image of the identity morphism IdGA
through the natural bijection of the adjunction.

Proposition 1.2.3. A pair of functors F : C → D and G : D → C is an adjunction
F : C � D : G if and only if there exists a pair of natural transformations η : IdC ⇒ GF and
ε : FG⇒ IdD such that for every A ∈ C and B ∈ D, the following diagrams commute:

FA FGFA

FA
IdFA

FηA

εFA

GB GFGB

GB
IdGB

ηGB

GεB

Proposition 1.2.4. Every left adjoint functor preserves colimits and every right adjoint
functor preserves limits.

Given model categories, we can impose further conditions on an adjunction to ensure
that it respects the model structures. This leads to the following definition:

Definition 1.2.5. Let F : C � D : G be an adjunction between model categories. Then we
say that the pair of F and G is a Quillen adjunction between C and D if any of the following
equivalent conditions is satisfied:
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(i) F preserves cofibrations and trivial cofibrations.

(ii) G preserves fibrations and trivial fibrations.

(iii) F preserves cofibrations and G preserves fibrations.

(iv) F preserves trivial cofibrations and G preserves trivial fibrations.

The equivalences between those conditions follow directly from the axioms of the model
structures and the definition of adjunction (for details, see [Hir09, Proposition 8.5.3]). As in
the case of adjunctions, we call F a left Quillen functor and G a right Quillen functor.

Remark 1.2.6. Observe that since the composition of natural isomorphisms is a natural
isomorphism, the composition of left (resp. right) adjoint functors is left (resp. right) adjoint.
The same is true with Quillen adjunctions: the composition of left (resp. right) Quillen
adjoint functors is left (resp. right) Quillen adjoint.

A Quillen adjunction also preserves fibrant (resp. cofibrant) objects and weak equivalences
under certain conditions. The first property follows from the well-known Ken Brown’s
Lemma [Hov07, Lemma 1.1.12]:

Proposition 1.2.7. Every left Quillen functor preserves weak equivalences between cofibrant
objects, and every right Quillen functor preserves weak equivalences between fibrant objects.

Proposition 1.2.8. Every left Quillen functor preserves cofibrant objects, and every right
Quillen functor adjoint preserves fibrant objects.

Proof. Consider a left Quillen functor F : C → D and an initial object ∅ of C. Because F is
a left adjoint and ∅ is a colimit, by Proposition 1.2.4 we know that F∅ is also an initial
object. On the other hand, for every cofibrant object A of C there is a cofibration ∅ ↪→ A.
Therefore, because F is a left Quillen functor, it preserves cofibrations, and F∅→ FA is a
cofibration, which implies that FA is a cofibrant object of D. Dually, the same argument
proves that every right Quillen functor preserves fibrant objects.

In addition to the previous properties, every right or left Quillen functor induces a functor
between homotopy categories. Let F : C � D : G be a Quillen adjunction. The total left
derived functor LF : Ho(C) → Ho(D) is the functor induced by the composite of F ◦ R
restricted to Ccf . Similarly, the total right derived functor RG : Ho(D)→ Ho(C) is induced
by the composite G ◦Q restricted to Dcf . Furthermore, these functors form an adjunction
LF : Ho(C) � Ho(D) : RG between homotopy categories. The details about why this is
well defined and the adjunction induced at the level of homotopy can be found in [Lur09,
Subsection A.2.5].

Finally, we can introduce Quillen equivalences as the Quillen adjunctions which induce an
equivalence of categories between the homotopy categories. We introduce also an equivalent
condition which is also commonly used as definition for Quillen equivalences. The details
about the equivalence between the conditions can be found in [Hov07, Proposition 1.3.13].

Definition 1.2.9. A Quillen adjunction F : C � D : G is a Quillen equivalence if any of
the following equivalent conditions is satisfied:

(i) For all cofibrant A in C and fibrant B in D, a morphism FA→ B is a weak equivalence
in D if and only if the adjunct morphism A→ GB is a weak equivalence in C.

(ii) F and G induce an equivalence between the homotopy categories.
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Remark 1.2.10. Consider two composable left (resp. right) Quillen adjunctions F1 and F2.
Thanks to the facts discussed in Remark 1.2.6, F2 ◦ F1 is also a left (resp. right) Quillen
adjunction. Then, if two out of three of F1, F2 and F2 ◦ F1 are Quillen equivalences, so is
the third. This fact follows directly from the definition, because weak equivalences have the
two-out-of-three property.

Recall that a functor F is said to reflect weak equivalences if for every morphism f ,
when Ff is a weak equivalence so is f . In some cases, proving that a Quillen adjunction
satisfies the definition of a Quillen equivalence can be a challenging task. For this reason,
the following proposition (proven in [Hov07, Corollary 1.3.16]) will be very useful:

Proposition 1.2.11. The following are equivalent:

(i) The pair of F and G is a Quillen equivalence.

(ii) F reflects weak equivalences and for all fibrant objects B ∈ D the adjunction counit
εB : FGB → B is a weak equivalence.

(iii) G reflects weak equivalences and for all cofibrant objects A ∈ C the adjunction unit
ηA : A→ GFA is a weak equivalence.

1.3 Topological spaces
The goal of this section is to set some notation regarding topological spaces, and to review

the construction of the Quillen model structure over topological spaces.
Let Top denote the category of topological spaces and continuous functions. This category

of topological spaces lacks many good categorical properties. It is complete, cocomplete and
cartesian monoidal using the function space Y X of continuous maps from X to Y (with the
compact-open topology [Mun17, Section 7.5]) as internal homset functor. But Top is not
cartesian closed, and the product does not commute with colimits in general. In subsequent
sections we will need to use some of these properties; therefore we need to consider a “nicer”
category of topological spaces.

A topological space X is weakly Hausdorff if, for every map f : K → X where K is
compact Hausdorff, f(K) is closed in X. On the other hand, a subset U of X is compactly
open if for every continuous map f : K → X where K is compact Hausdorff, f−1(U) is open
in K. Similarly, U is compactly closed if for every such map f , f−1(U) is closed in K. Then,
a topological space X is a Kelley space if every compactly open subset is open, or equivalently,
if every compactly closed subset is closed. A Kelley space that is also weakly Hausdorff is
called a compactly generated space. Denote the full subcategory of Top consisting of the
compactly generated spaces by CGTop.

By [Hov07, Proposition 2.4.22], the category CGTop is cartesian closed, and therefore
solves the drawbacks of Top commented earlier. Additionally, by [Hov07, Corollary 2.4.24],
the model structure that we will define over Top is Quillen equivalent to the corresponding one
over CGTop via the inclusion functor. Hence, we will not lose any homotopical information
by restricting our category of topological spaces to CGTop. From now on, we will work
exclusively in CGTop, which will be denoted by Top for the sake of simplicity.

Consider the n-dimensional sphere Sn, with base-point (1, 0, . . . , 0) ∈ Sn. Then, for any
pointed topological space (X,x) and any n ≥ 1, we define the n-homotopy group πn(X,x) as
the group of homotopy classes of base-point preserving maps from Sn to X. For the case
n = 0, the set of homotopy classes of base-point preserving maps from S0 to X is a set
instead of a group, called the set of path components.
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Definition 1.3.1. A map of topological spaces f : X → Y is a weak homotopy equivalence
if f induces a bijection between path components and for any n ∈ N \ {0} and any x ∈ X, it
also induces an isomorphism on the homotopy groups:

πn(f, x) : πn(X,x)
∼=−→ πn(Y, f(x)).

Let I := [0, 1] be the closed unit interval, and Dn the n-dimensional disk of radius 1
centered at the origin, both with the Euclidean topology. Recall that a CW-complex is a
topological space X constructed inductively in the following way:

• Select a set X0 as the 0-cells of X.
• Inductively, form the n-skeleton Xn from Xn−1 by attaching n-cells {eni }0≤i≤m by

maps {ϕni : Sn−1 → Xn−1}0≤i≤m. Each cell is attached by means of a pushout:

Sn−1 Xn−1

Dn Dn
∐
ϕn

i
Xn−1

ϕn
i

y

Then, if X has finite dimension n, define X = Xn, else define X =
⋃
nX, with the weak

topology [Hat19, p. 519].

Definition 1.3.2. A map of topological spaces p : E → B is a Serre fibration if it satisfies
the homotopy lifting property with respect to any CW-complex, i.e., p has the RLP with
respect to (Id, 0) : A→ A× I for every CW-complex A.

As proven originally by Quillen, the category of topological spaces admits a model
structure, usually called Quillen model structure. In this work, we consider the same model
structure but applied to compactly generated spaces. For a proof of the existence of this
model structure over compactly generated spaces, see [Hov07, Theorem 2.4.19].

Theorem 1.3.3. [Qui67, Section II]. There is a model structure over Top, usually referred
to as the Quillen model structure, defined as follows:

• The weak equivalences are the weak homotopy equivalences.

• The fibrations are the Serre fibrations.

• The cofibrations are the maps with the LLP with respect to the trivial fibrations.

Furthermore, every topological space is fibrant, and the retracts of CW-complexes are cofibrant.

Using these definitions, we can relate more classical homotopical constructions to their
associated concepts in model categories. For example, for every space X there is a canonical
choice of cylinder object as the product X × I and of path object as the mapping space XI .
Additionally, the left homotopy from the model structure using this cylinder object coincides
with the topological definition of homotopy.

On the other hand, Top admits other model structures such as the Hurewicz model
structure. Although we will not use this model structure, we will need the definition of its
cofibrations at some point:

Definition 1.3.4. A map of topological spaces i : A → X is a Hurewicz cofibration if it
satisfies the homotopy extension property, i.e., i has the left lifting property with respect to
p1 : XI → X for every topological space X.
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1.4 Simplicial sets
Simplicial sets are a common tool for studying topological spaces from a combinatorial

point of view. The relation between simplicial sets and topological spaces is modelled by
a Quillen equivalence, which proves that the two categories have the same homotopical
information.

In this section we will start with a recap of basic definitions related to simplicial sets.
Afterwards, we will introduce a less known generalization of the adjunction between simplicial
sets and topological spaces, called nerve and realization adjunction. Finally, we will review
the Quillen equivalence between simplicial sets and topological spaces.

Definition 1.4.1. Define the simplex category ∆ as the category with objects the linearly
ordered sets [n] := {0, 1, . . . , n} for all n ≥ 0, and morphisms all set functions [n] → [m]
which are non-decreasing.

Definition 1.4.2. A simplicial object in a category C is a functor ∆op → C. Dually, a
cosimplicial object in C is a functor ∆→ C. Because functors form a category with natural
transformations, there is a category of simplicial objects in C, and one of cosimplicial objects
in C.
Definition 1.4.3. A simplicial set is a simplicial object in Set. The category of simplicial
sets is denoted by sSet := Func(∆op,Set).

Any simplicial set X has a set for each [n], denoted X[n] or Xn. On the other hand, in the
simplex category there are two special types of morphisms: the injections δni : [n− 1]→ [n]
and the surjections σni : [n+ 1]→ [n], both defined for every 0 ≤ i ≤ n by

δni (j) =

{
j if j < i

j + 1 if j ≥ i
σni (j) =

{
j if j ≤ i
j − 1 if j > i

Because any simplicial set X is a functor, these morphisms induce functions, called faces
dni := X(δni ) : Xn → Xn−1 and degeneracies sni := X(σni ) : Xn → Xn+1. Furthermore, every
morphism in the simplex category can be expressed as a composition of a surjection and an
injection. Therefore, the sets {Xn}n∈N with the faces and degeneracies determine a unique
simplicial set.

Also, from the properties of the injections and surjections, we can derive the following
simplicial identities, that all simplicial set have to satisfy:

dn−1
i ◦ dnj = dn−1

j−1 ◦ d
n
i if i < j

dn+1
i ◦ snj =


sn−1
j−1 ◦ dni if i < j

IdXn
if i = j or i = j + 1

sn−1
j ◦ dni−1 if i > j + 1

sn+1
i ◦ snj = sn+1

j+1 ◦ s
n
i if i ≤ j

The standard n-simplex is the simplicial set defined by ∆[n] := ∆(·, [n]). By the Yoneda
lemma [Rie16, Theorem 2.2.4], for each simplicial set X and each n ∈ N, we have

Xn
∼= sSet(∆( · , [n]), X) = sSet(∆[n], X).

Then, the boundary of ∆[n], denoted ∂∆[n], is defined as the smallest sub-simplicial-set of
∆[n] containing ∆[n]0,∆[n]1, . . . ,∆[n]n−1. The k-th horn Λk[n] is the sub-simplicial-set of
∆[n] obtained from removing the k-th face. The horns with 0 < k < n are usually called
inner horns, and the ones with k = 0 or k = n are the outer horns.
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1.4.1 Nerve and realization
In the subsequent chapters, we will define several adjunctions from simplicial sets to

other categories. It turns out that all these adjunctions follow a general pattern, which arises
as a generalization of the adjunction between simplicial sets and topological spaces. The
general pattern was originally found by Kan in [Kan58], but it has been used in more modern
contexts like [Lur21, Variant 1.1.7.7] and [Hin07].

Let C be any cocomplete category and Q : ∆→ C be a cosimplicial object in C. For any
object A ∈ C, we can apply the contravariant homset functor, obtaining a set C(Q[n], A)
for every [n] ∈ ∆. Since Q is a cosimplicial object, the generating morphisms of ∆,
δnj : [n − 1] → [n] and σnj : [n + 1] → [n], induce morphisms Q(δnj ) : Q[n − 1] → Q[n] and
Q(σnj ) : Q[n + 1] → Q[n] satisfying the standard cosimplicial identities. Hence, because
C( · , A) is a contravariant functor, C(Q[ · ], A)) is a simplicial set. Therefore, the following
functors are well-defined:

Definition 1.4.4. Define the Q-nerve as the functor NQ : C → sSet which maps an object
A ∈ C to the simplicial set defined for every [n] ∈ ∆ by

NQ
n (A) = C(Q[n], A).

Now assume also that C is cocomplete. Then, it has a canonical copowering functor over
Set, i.e., there exists a functor ⊗ : Set× C → C defined by

S ⊗B :=
∐
s∈S

B.

This copowering over Set is required to define the candidate adjoint functor to the Q-nerve:

Definition 1.4.5. Define the Q-realization functor | · |Q : sSet→ C as the left Kan extension
of NQ, i.e., for all X ∈ sSet:

|X|Q =

∫ [n]∈∆

Xn ⊗Q[n].

As proved originally by [Kan58], the pair of Q-nerve and Q-realization always form an
adjunction. The proof given bellow follows the original argument but with a more modern
point of view:

Proposition 1.4.6. The Q-nerve and Q-realization form an adjunction

| · |Q : sSet� C : NQ .

Proof. By the following chain of isomorphisms, the functors form an adjunction:

C(|X|Q, A) = C

((∫ [n]∈∆

Xn ⊗Q[n]

)
, A

)
∼=
∫

[n]∈∆

C(Xn ⊗Q[n], A) (1.1)

∼=
∫

[n]∈∆

Set(Xn, C(Q[n], A)) (1.2)

=

∫
[n]∈∆

Set(Xn,N
Q
n (A))

∼= sSet(X,NQ(A)). (1.3)

https://kerodon.net/tag/001T
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The isomorphism of (1.1) follows from the Hom functor sending colimits in the first argument
to limits. The one from (1.2) follows as a natural isomorphism of the canonical copowering
over Set. Using again that the Hom functor sends colimits in the first argument to limits,
we obtain the desired isomorphism:

C(Xn ⊗Q[n], A) = C

( ∐
x∈Xn

Q[n], A

)
∼=
∏
x∈Xn

C(Q[n], A) ∼= Set(Xn, C(Q[n], A)).

Finally, the isomorphism from (1.3) follows directly from the definition of maps between
simplicial sets.

As said before, we will use this pattern to define several functors through this work. In
the next subsection, the classic singular simplicial and geometric realization adjunction will
be presented as a pair of Q-nerve and Q-realization. In fact, the name of Q-realization comes
from the geometric realization.

On the other hand, the name of the Q-nerve comes from the other uses of this pattern,
where the right adjoint is some type of nerve. For example, consider the category of categories
Cat. There is a trivial cosimplicial object given by the elements of ∆, the categories [n].
Those cosimplicial objects induce a [ · ]-nerve, which coincides with the traditional nerve. For
any category C and any n ∈ N, it is defined as

Nn(C) := N[ · ]
n (C) = Cat([n], C).

1.4.2 Quillen equivalence with topological spaces
In this subsection we want to sum up the well-known Quillen equivalence between

simplicial sets and topological spaces. The underlying adjunction between these categories
will be presented using the nerve and realization pattern introduced in the last subsection.
Consider the following cosimplicial object:

Definition 1.4.7. The standard topological n-simplex is the topological space

∆n := {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1,
∑n
i=0 ti = 1}.

Define the standard topological simplex map as ∆• : [n] 7→ ∆n.

Proposition 1.4.8. ∆• is a cosimplicial object in Top.

Proof. For any map f : [n]→ [m], the image ∆f : ∆n → ∆m is defined for all (t0, . . . , tn) as

∆f(t0, . . . , tn) =
(∑

f(i)=0 ti,
∑
f(i)=1 ti, . . . ,

∑
f(i)=m ti

)
and has all the desired simplicial identities.

Following the construction from Definitions 1.4.4 and 1.4.5, the cosimplicial objects ∆•

induce a definition of a nerve and a realization:

Definition 1.4.9. The singular simplicial set Sing : Top→ sSet is the functor which, for
any X ∈ Top,

Singn(X) := N∆•

n = sSet-Cat(∆n, X).

On the other hand, we define the geometric realization | · | : sSet → Top as the functor
which, for any X ∈ sSet,

|X| := |X|∆• =

∫ [n]∈∆

Xn ⊗∆n.
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By Proposition 1.4.6, these functors form an adjunction: | · | : sSet� Top : Sing. The
next step is proving that this adjunction is in fact a Quillen equivalence. Before, we need to
define the Quillen model structure over sSet:

Definition 1.4.10. A morphism of simplicial sets f : X → Y is called a weak homotopy
equivalence if |f | : |X| → |Y | is a weak homotopy equivalence of topological spaces.

Definition 1.4.11. A morphism of simplicial sets f : X → Y is a Kan fibration if it has
the RLP with respect to the horn inclusions Λk[n]→ ∆[n] for all n ≥ 1 and all 0 ≤ k ≤ n.

Definition 1.4.12. A simplicial set X is called a Kan complex if for any n ≥ 1 and
0 ≤ k ≤ n, every map Λk[n] → X admits an extension ∆[n] → X through the canonical
inclusion Λk[n]→ ∆[n].

Theorem 1.4.13. [Qui67, Section II.3]. The category of simplicial sets admits a model
structure named Quillen model structure, in which:

• The weak equivalences are the weak homotopy equivalences.

• The fibrations are the Kan fibrations.

• The cofibrations are the injective maps.

Furthermore, all objects are cofibrant, and the fibrant objects are the Kan complexes.

As in the case of topological spaces, there are other model structures over simplicial sets.
In the following chapters we will study one of them. In particular, this alternative model has
the following fibrant objects:

Definition 1.4.14. A simplicial set X is called a quasi-category if for any n ≥ 1 and
0 < k < n, every map Λk[n] → X admits an extension ∆[n] → X through the canonical
inclusion Λk[n]→ ∆[n].

Now that we have defined model structures for Top and sSet, we are ready to check that
the previous adjunction between them is in fact a Quillen adjunction. A proof about this
result in a modern context can be found in [Hov07, Theorem 3.6.7].

Theorem 1.4.15. The adjunction | · | : sSet� Top : Sing is a Quillen adjunction.

Because it is a left Quillen functor, it preserves colimits and cofibrations. But we can also
prove that it preserves finite limits and fibrations. The preservation of finite limits only works
when choosing a “nice” category of spaces, like the category of compactly generated spaces
that we are using. The details can be found in [GJ09, Proposition 2.4, Theorem 10.10].

Proposition 1.4.16. The geometric realization preserves finite limits.

Theorem 1.4.17. The geometric realization of a Kan fibration is a Serre fibration.

Finally, we can show that the unit and the counit of this adjunction are in fact weak
equivalences, and derive the existence of a Quillen equivalence. The proof of the unit can be
found in [GJ09, Proposition 11.1], and the one from the counit in [Hov07, Theorem 3.6.7].

Proposition 1.4.18. For any simplicial set X, the unit map ηX : X → Sing(|X|) is a weak
equivalence of simplicial sets.

Proposition 1.4.19. For every topological space X, the counit map εX : |Sing(X)| → X is
a weak homotopy equivalence of topological spaces.
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Theorem 1.4.20. The Quillen adjunction | · | : sSet� Top : Sing is a Quillen equivalence.

Proof. By Proposition 1.2.11, it is enough to prove that the geometric realization reflects
weak equivalences and that the counit of the adjunction is a weak equivalence for all fibrant
objects. The first fact follows from the definition of the geometric realization, and the second
one corresponds to Proposition 1.4.19.



Chapter 2

The fundamental ∞-groupoid as a
Moore path category

As discussed in the Introduction, there are several models of ∞-groupoids. Once a
model is chosen, the homotopy hypothesis is a theorem proving that the model category of
∞-groupoids has a zigzag of Quillen equivalences ending at the model category of topological
spaces. In particular, for each topological space X there is an associated ∞-groupoid named
the fundamental ∞-groupoid Π∞(X) which models the structure of higher paths over X.

The first section of this chapter introduces a model for higher categories based on
topological categories. In the second one, simplicial categories will be presented, as a tool to
relate simplicial sets and topological categories. In the third, we will prove the homotopy
hypothesis for this model of ∞-groupoids. Finally, the last section will be used to introduce
a more manageable model to the fundamental ∞-groupoid. This proposed model is based
on Moore path categories as an alternative to the topological category constructed from a
topological space in the previous section.

2.1 Topological categories
In this section we present a notion of categories with higher morphisms based on enriched

categories. An enriched category has homsets with some extra structure, making the homsets
be objects in a selected category. We will consider two examples of this construction: simplicial
categories, which are categories enriched in simplicial sets, and topological categories, which
are enriched in topological spaces.

Definition 2.1.1. LetM be a monoidal category (see [Lur09, Appendix A.1.3 and A.1.4])
with product × and unit I. Define anM-enriched category C as:

• A collection of objects.
• For every pair of objects X,Y ∈ C, the morphisms between X and Y are an object of
M denoted C(X,Y ) or Hom(X,Y ).
• For every triple of objects X,Y, Z ∈ C, an associative composition map

C(X,Y )× C(Y,Z)→ C(X,Z).

• For every object X ∈ C, a morphism I → C(X,X) ofM which represents the identity
element.

15
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An enriched functor is a functor F : C → D between enriched categories over the same
categoryM, which consists of a map between the objects of C and D and a map between
each collection of morphisms

C(X,Y ) −→ D(FX,FY )

which must preserve the composition and identity elements. Any functor between enriched
categories will be assumed to be an enriched functor. Then, we can consider the category of
all enriched categories over a categoryM, with morphisms being the enriched functors.

As we mentioned earlier, the category of compactly generated topological spaces Top is
a monoidal category [Hov07, Proposition 2.4.22]. Hence, we can consider enriched categories
over the category of compactly generated topological spaces:

Definition 2.1.2. A topological category is a category enriched over the category Top.
Furthermore, we will denote the category of all topological categories as Top-Cat.

Our next goal is to present a model structure in the category of all topological categories.
This model structure depends on choosing a suitable notion of “weak equivalence” between
two topological categories. First, we need to define a homotopy category associated to each
topological category, without the need of a model structure:

Definition 2.1.3. Let C be a topological category. Define the homotopy category hC as the
category with:

• The objects of hC are the objects of C.
• For any X,Y ∈ C, define hC(X,Y ) = π0C(X,Y ).
• The composition and identity are induced from C by applying the functor π0.

Theorem 2.1.4. [Amr13, Theorem 1.1]. The category Top-Cat has a model structure with:

• The weak equivalences are the functors F : C → D such that:

– For any X,Y ∈ C, the map C(X,Y )→ D(FX,FY ) is a weak equivalence in Top.
– The induced morphism hF : hC → hD is an equivalence of categories.

• The fibrations are the functors F : C → D such that:

– For any X,Y ∈ C, the map C(X,Y )→ D(FX,FY ) is a fibration in Top.
– For every X ∈ C and Y ∈ D, and every weak equivalence e : FX → Y in D, there
exists an object Z ∈ C with a weak equivalence d : X → Z in C such that Fd = e.

• The cofibrations are the maps with the LLP with respect to the trivial fibrations.

Furthermore, all objects of Top-Cat are fibrant, and the cofibrant objects are the topological
categories in which each mapping space is a cofibrant space.

On the other hand, we can select a subcategory of topological categories which we want
to associate with topological spaces. Those topological categories will be the ones with all
higher morphisms being invertible “up to homotopy”.

Definition 2.1.5. A topological category C is an ∞-groupoid if hC is a groupoid. The
subcategory of ∞-groupoids will be denoted ∞-Grpd.

The intuitive property of invertibility “up to homotopy” of higher morphisms can be
interpreted using the condition on the homotopy category. Consider any ∞-groupoid C and a
morphism f : X → Y of C. Because hC is a groupoid, we know that there exists a morphism
g : Y → X of C such that g ◦ f and IdX belong to the same path component of C(X,X), and
f ◦ g and IdY belong to the same path component of C(Y, Y ).
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2.2 Simplicial categories

Now that we have the notion of∞-groupoids defined, we need to investigate how it relates
to topological spaces. As said before, we want to define a zigzag of Quillen equivalences
from topological categories to topological spaces. This zigzag will go through the categories
of simplicial sets. In this section, we will study simplicial categories, as an intermediate
category which connects simplicial sets with topological categories.

Definition 2.2.1. A simplicial category is a category enriched over sSet. We will denote
the category of all simplicial categories as sSet-Cat.

Remark 2.2.2. This definition of simplicial category is sometimes confused with the more
general notion of a simplicial object in the category of categories. The category of all
simplicial objects in the category of categories is denoted by sCat. Define the simplicial
inclusion I : sSet-Cat→ sCat which sends any simplicial category C to a simplicial object
in Cat with

Obj(In(C)) = Obj(C) and (In(C))(X,Y ) = (C(X,Y ))n ∀X,Y ∈ Obj(C).

Furthermore, there is an equivalence of categories between sSet-Cat and the full subcategory
of sCat with the same objects at all levels.

The model structure over sSet-Cat can be defined by a “geometric realization”, similarly
to the construction of the model structure of simplicial sets. The following definition is a
well-defined enriched functor thanks to the definition of Top as the category of compactly
generated topological spaces, because we need the property proved in Proposition 1.4.16:

Definition 2.2.3. Define the enriched geometric realization | · |e : sSet-Cat→ Top-Cat as
the functor that sends every simplicial category C to the topological category |C|e defined by:

• The same objects as C.

• For every X,Y ∈ C, |C|e(X,Y ) = |C(X,Y )|.

• The composition and identity are induced from the ones from C by applying the
geometric realization functor.

Definition 2.2.4. Define the homotopy category hC of a simplicial category C as h|C|e.

Definition 2.2.5. A functor F : C → D between simplicial categories is a Dwyer-Kan
equivalence if |F | : |C| → |D| is a weak equivalence of topological categories.

Remark 2.2.6. This definition can be expressed in similar terms as the weak equivalences
of topological categories. Thus, a functor F : C → D between simplicial categories is a
Dwyer-Kan equivalence if and only if:

• For any X,Y ∈ C, the map C(X,Y ) −→ D(FX,FY ) is a weak equivalence in sSet.

• The induced morphism hF : hC → hD is an equivalence of categories.

For the definition of the cofibrations and cofibrant objects we need to define the general-
ization of free categories to the simplicial setting. This concept will be useful again later
when we study simplicial localizations.
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Definition 2.2.7. A category C is free if there is a set S of non-identity maps in C such
that every non-identity map in C can be uniquely written as a finite composition of maps
in S. The maps of S are called generators. Furthermore, a simplicial category C is free if
it is a free category in each dimension after applying the simplicial inclusion I(C) and all
degeneracies of generators are generators.

Theorem 2.2.8. [Ber08, Theorem 3.9 and Proposition 3.8]. The category sSet-Cat admits
a model structure called Bergner model structure such that:

• The weak equivalences are the Dwyer-Kan equivalences.

• The fibrations are the functors F : C → D such that |F | : |C| → |D| is a fibration of
topological categories.

• The cofibrations are the morphism with the LLP with respect to any trivial fibration.

The fibrant objects are the categories in which the mapping simplicial sets are Kan complexes.
On the other hand, the cofibrant objects are the retracts of a free simplicial category.

Finally, we can define a homotopical inverse to the enriched geometric realization. Define
the enriched singular simplicial set Singe : Top-Cat→ sSet-Cat as the functor which for
any C ∈ Top-Cat, Singe(C) is a simplicial category with the same objects as C and that for
each pair X,Y ∈ Singe(C), (Singe(C))(X,Y ) = Sing(C(X,Y )). Using the Quillen equivalence
defined in Theorem 1.4.20, it follows that those two functors induce a Quillen equivalence
between topological and simplicial categories:

Theorem 2.2.9. [Amr13, Corollary 2.7]. There is an adjunction

| · |e : sSet-Cat� Top-Cat : Singe

which is a Quillen equivalence.

Then, we have proven a way to relate any topological category with a simplicial category
respecting the homotopical structure. This is the first step of a series of Quillen equivalences
that will end up relating the topological categories with topological spaces.

2.2.1 Homotopy coherent nerve
The next step is relating simplicial categories with simplicial sets. In this subsection

we will define the pair of adjoint functors used to compare these two categories, using the
general pattern of nerve and realization with a cosimplicial object.

Definition 2.2.10. Let [n] ∈ ∆. Define the homotopy coherent simplicial category ∆<[n] ∈
sSet-Cat as the simplicial category with:

• Obj(∆<[n]) = [n] = {0, . . . , n}.

• For every pair of objects i, j ∈ Obj(∆<[n]):

Hom(i, j) =

{
∅ if i > j

N(Pi,j) if i ≤ j

where Pi,j = {I ⊆ P([n]) | {i, j} ⊆ I ⊆ {i, i+ 1, . . . , j}} as a poset category with set
inclusion morphisms.
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• For i ≤ j ≤ k, the composition is a map

◦ : Hom(i, j)×Hom(j, k)→ Hom(i, k)

induced by the map of posets:

Pi,j × Pj,k → Pi,k
(I, J) 7→ I ∪ J

Remark 2.2.11. (i) If i < j, it can be shown that Hom(i, j) = N(Pi,j) = (∆[1])
(j−i−1).

When j = i+ 1, Hom(i, i) is the simplicial set with only one non-degenerate 0-simplex
{i, j}. On the other hand, if i = j, Hom(i, i) is the simplicial set with only one
non-degenerate 0-simplex {i}.

(ii) If i ≤ j, Hom(i, j) = N(Pi,j) has as 0-simplices the elements of Pi,j . Because the
composition is given by union of sets at the level of 0-simplices, it is easy to see that
all elements of Pi,j except {i, j} are decomposable. Then, each Hom(i, j) has one
indecomposable 0-simplex, the one corresponding to the set {i, j}.

Proposition 2.2.12. The map [n] 7→ ∆<[n] defines a covariant functor, i.e., ∆< is a
cosimplicial object in sSet-Cat.

Proof. Given a non-decreasing morphism f : [m]→ [n], we only need to define the induced
morphism f∗ : ∆<[m]→ ∆<[n]. At the level of the objects f∗ is simply the application of
f . We just need to define a map f∗ : N(Pi,j) → N(Pf(i),f(j)) for every i, j ∈ N. A map
of nerves of posets is uniquely determined by the restriction to the 0-simplices. Then, we
need to define a function f∗ : Pi,j → Pf(i),f(j), and it is enough to define it only for the
indecomposable elements. Thus, the desired map is defined by f∗({i, j}) = {f(i), f(j)}.

Thus, we can define a nerve and realization from the cosimplicial objects ∆<[n] following
the construction of Definitions 1.4.4 and 1.4.5. These functors are also known as:

Definition 2.2.13. The homotopy coherent nerve N< : sSet-Cat → sSet is the functor
which, for any C ∈ sSet-Cat,

N<n (C) := N∆<

n = sSet-Cat(∆<[n], C).

On the other hand, we define the simplicial path category C : sSet → sSet-Cat as the
functor which, for any X ∈ sSet,

C(X) := |X|∆< =

∫ [n]∈∆

Xn ⊗∆<[n].

By Proposition 1.4.6, N< is right adjoint to C. In the following sections we will prove
that in fact it is Quillen adjoint, but this requires introducing a new model structure over
simplicial sets. First, we will present some examples of the application of C, and some of
them will be useful later. The development of those examples follows the arguments given
in [Hin07, Section 4.1.5]:

Example 2.2.14 (Simplicial sphere). Let Sn = ∆[n]/∂∆[n] be the simplicial n-th dimen-
sional sphere. We want to compute C(Sn), which by definition is equal to

C(Sn) =

∫ [n]∈∆

Snn ⊗∆<[n]. (2.1)
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Clearly, the objects of C(Sn) are the same as the ones from Sn; therefore C(Sn) has only one
object ∗. The morphisms of C(Sn) consist of only one mapping simplicial set C(Sn)(∗, ∗).
Because the only non-degenerate k-simplex with k > 0 of ∆[n]/∂∆[n] is its only n-simplex,
the only non-trivial coproduct of the coend of Equation 2.1 is the n-th one, which is equal to

Snn ⊗∆<[n] = ∗ ⊗∆<[n] = ∆<[n].

Then, by definition of coend, the morphisms of C(Sn)(∗, ∗) must be morphisms of the
simplicial category ∆<[n] quotient by some relations dependent on the face maps of Sn.

Then, the mapping simplicial set C(Sn)(∗, ∗) is the free simplicial monoid generated by
the set {[α] | α ∈ ∆<[n]} modulo the following relations:

• [α ◦ β] = [α] ◦ [β] if α and β are composable.

• [α] = Id∗ if α belongs to the image of ∂i : ∆<[n− 1]→ ∆<[n] for some 0 ≤ i ≤ n.

Observe that the first condition ensures the compatibility between compositions, and the
second one imposes the compatibility with the face maps of Sn.

Let us try to explicitly compute that quotient. Recall that for each a, b ∈ ∆<[n] we
know ∆<[n](a, b) = (∆[1])b−a−1. Then, each morphism f : a→ b is represented by a tuple
(fa, fa+1, . . . , fb−1, fb) with all fi ∈ ∆[1]. Observe that in this case f belongs to the image
of a face map ∂i if and only if i 6∈ (a, b) or i ∈ (a, b) and fi = 1. Thus, any morphism
f ∈ ∆<[n](a, b) with a 6= 0 or b 6= n belongs to a face map. Furthermore, for f ∈ ∆<[n](0, n),
[f ] 6= Id∗ if and only if all fi 6= 1. Then, observe that this description coincides with the
definition of S1 ∧ · · · ∧ S1 (n− 1 times). Therefore, C(Sn)(∗, ∗) is homotopy equivalent to an
(n− 1)-sphere.

Example 2.2.15 (Simplicial disk). Let Dn+1 = ∆[n+ 1]/
⋃
i>0 ∂

i(∆[n]) be the simplicial
(n + 1)-st dimensional disk. The same arguments as in the case of the simplicial sphere
apply. The simplicial category C(Dn+1) has only one object ∗, and one mapping simplicial
set C(Dn+1)(∗, ∗). Furthermore, C(Dn+1)(∗, ∗) is also a free simplicial monoid generated by
the set {[α] | α ∈ ∆<[n+ 1]}, but this time modulo the following relations:

• [α] = Id∗ if α = β ◦ γ and β : i→ n+ 1 with i > 1.

• [α] = Id∗ if α belongs to the image of ∂i : ∆<[n− 1]→ ∆<[n] for some 0 ≤ i ≤ n.

By arguments similar to the ones of the previous example, we can prove that C(Dn+1)(∗, ∗)
is ∆[1] ∧ S1 ∧ · · · ∧ S1 (with S1 repeated n− 1 times), which is homotopy equivalent to the
n-th disk.

2.2.2 Joyal model structure
As we said before, the adjunction induced by the homotopy coherent nerve is a Quillen

adjunction, but only if we consider another new model structure over simplicial sets:

Theorem 2.2.16. [Lur09, Theorem 2.2.5.1]. There is a model structure over sSet called
Joyal model structure with:

• The weak equivalences, called categorical equivalences, are the maps f : X → Y of
simplicial sets such that C(f) : C(X)→ C(Y ) is a Dwyer-Kan equivalence.

• The cofibrations are the injective maps.

• The fibrations are the morphisms with the RLP with respect to any trivial cofibration.
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Furthermore, all objects are cofibrant and the fibrant objects are the quasi-categories.

Remark 2.2.17. By [JT07, Proposition 1.15], the Quillen model structure on sSet is a left
Bousfield localization [Hir09, Definition 3.3.1] of the Joyal model structure. Thus, every
categorical equivalence is a weak homotopy equivalence. Furthermore, a map between Kan
complexes is a weak homotopy equivalence if and only if it is a categorical equivalence.

To distinguish the two different model categories over simplicial sets, we will denote by
sSetQ the one with the Quillen model structure, and by sSetJ the one with Joyal’s model
structure. Then, the adjunction induced by the homotopy coherent nerve forms a well-known
Quillen equivalence:

Theorem 2.2.18. [Lur09, Theorem 2.2.5.1]. The adjunction C : sSetJ � sSet-Cat : N<

determine a Quillen equivalence between sSetJ and sSet-Cat.

Proposition 2.2.19. The homotopy coherent nerve preserves weak equivalences of fibrant
simplicial categories.

Proof. By Theorem 2.2.18 and Proposition 1.2.7, N< sends weak equivalences between fibrant
simplicial categories to categorical weak equivalences. Also, we know that all categorical
weak equivalences between simplicial sets are weak equivalences. Then, N< sends weak
equivalences between fibrant simplicial categories to weak equivalences.

Proposition 2.2.20. Let C be a fibrant simplicial category. If hC is a groupoid, then N<(C)
is a Kan complex.

Proof. By Theorem 2.2.18 and Proposition 1.2.8, we know that N< sends fibrant simplicial
categories to quasi-categories. Because C is a weak simplicial groupoid, the homotopy
category of C is a groupoid. By [Joy02, Corollary 1.4], a quasi-category is a Kan complex
if and only if its homotopy category is a groupoid. Then we only need to prove that the
homotopy category of h(N<(C)) := h(C(N<(C))) is a groupoid. Using Theorem 2.2.18, we
know that the counit C(N<(C))→ C is a Dwyer-Kan weak equivalence. Finally, this implies
that h(C(N<(C))) ∼= hC, which is a groupoid by the previous arguments.

Corollary 2.2.21. Let C be an ∞-groupoid. The simplicial set N<(Singe(C)) is a Kan
complex.

Proof. For any topological category C, Singe(C) is a fibrant simplicial category, because
all topological categories are fibrant and Singe is a right Quillen adjoint. On the other
hand, because C is an ∞-groupoid, h(Singe(C)) is a groupoid. Then, applying the previous
proposition, we obtain that N<(Singe(C)) is a Kan complex.

In order to relate the Joyal and the Quillen model structures, we will define another
adjunction. We can use again the same pattern of nerve and realization:

Proposition 2.2.22. [JT07, Section 1]. Let [n] ∈ ∆. There is a cosimplicial object
k : ∆→ sSet defined as the nerve of the groupoid freely generated by [n] as a category.

Thus, we can define a nerve and realization from the cosimplicial object k following the
construction of Definitions 1.4.4 and 1.4.5. These functors are also known as:

Definition 2.2.23. The functor k! : sSetQ → sSetJ is defined for any X ∈ sSetQ as

(k!(X))n := Nk
n(X) = sSet(k[n], X).
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On the other hand, we define k! : sSetJ → sSetQ as the functor which, for any X ∈ sSetJ ,

k!(X) := |X|k =

∫ [n]∈∆

Xn ⊗ k[n].

By Proposition 1.4.6, we know that these functors form an adjunction. But by [JT07,
Theorem 1.19], we know there is in fact a Quillen adjunction

k! : sSetQ � sSetJ : k!.

This Quillen adjunction does not induce a Quillen equivalence. Finally, there are a couple of
properties that help us relate these functors to general simplicial sets and Kan complexes:

Proposition 2.2.24. [JT07, Proposition 1.16]. There is a functor J from quasi-categories
to Kan complexes, defined as J(X) being the largest sub-Kan complex of a quasi-category X.

Proposition 2.2.25. [JT07, Proposition 1.20]. The following are true:

(i) The natural map k!(X)→ J(X) is a trivial fibration for every quasi-category X.

(ii) The natural map X → k!(X) is monic and a weak homotopy equivalence for every
simplicial set X.

2.3 Grothendieck’s homotopy hypothesis
In this section, we want to prove the homotopy hypothesis for the model presented

above. By the results from Chapter 1, we know that there is a Quillen equivalence between
topological spaces and simplicial sets. Then, we only need to prove that there is another
Quillen equivalence between the category of ∞-groupoids and the category of simplicial sets,
imposing the following zigzag of Quillen equivalences between categories. If ψ = k!◦N< ◦ Singe
and θ = | · |e ◦ C ◦k!, the zigzag of Quillen equivalences is:

Top sSetQ ∞-Grpd.
|·|

Sing ψ

θ

This section follows the results presented in the article [Amr11]. First, we need to justify
that there exists a model structure in the subcategory of ∞-groupoids. Then, we will prove
that the Quillen adjunction between simplicial sets with the Quillen model structure and
topological categories induces a Quillen equivalence when restricted to ∞-groupoids.

Lemma 2.3.1. For every simplicial set X, θ(X) is an ∞-groupoid.

Proof. Because θ is a left adjoint, it preserves colimits. By [Amr13, p.17], θ(∆[n]) is an
∞-groupoid. Then, for any simplicial set X, θ(X) is an ∞-groupoid.

Lemma 2.3.2. Let F : C → D be a map of ∞-groupoids. Then F is a weak equivalence of
topological categories if and only if ψ(F ) is a weak equivalence in sSetQ.

Proof. Suppose that F is a Dwyer-Kan equivalence. Because ψ is a right Quillen functor
and all objects in Top-Cat are fibrant, we know that ψ(F ) is a weak equivalence in sSetQ.

Now assume that ψ(F ) is a weak equivalence in sSetQ. By Corollary 2.2.21, N<(Singe(C))
and N<(Singe(D)) are Kan complexes. In addition, because k! is a Quillen right adjoint,
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ψ(C) and ψ(D) are also Kan complexes. There is the following commutative diagram of weak
equivalences:

ψ(C) ψ(D)

J(N<(Singe(C))) J(N<(Singe(D)))

N<(Singe(C)) N<(Singe(D))

∼

∼

∼ ∼

∼

∼ ∼

Furthermore, the maps ψ(C)→ N<(Singe(C)) and ψ(D)→ N<(Singe(D)) are trivial fibrations
in sSetQ. By Remark 2.2.17, sSetJ is a left Bousfield localization of sSetQ, which implies
that N<(Singe(C))→ N<(Singe(D)) is an equivalence of quasi-categories. Then, Singe(C)→
Singe(D) is a Dwyer-Kan equivalence of simplicial categories, and consequently, F : C → D
is a topologically enriched weak equivalence.

Using the previous lemmas, we can prove that there exists the induced model structure
from the adjunction between simplicial sets and ∞-groupoids, and consider the homotopy
hypothesis as a theorem:

Theorem 2.3.3. The adjunction θ : sSetQ � ∞-Grpd : ψ induces a model structure on
∞-Grpd where:

• A morphism F : C → D of ∞-groupoids is a weak equivalence (fibration) if

ψ(F ) : ψ(C)→ ψ(D)

is a weak equivalence (fibration) in sSetQ.

• The cofibrations are the morphisms with the LLP with respect to any trivial fibration.

Proof. It is well-known that sSetQ is cofibrantly generated (see [Hir09, Definition 11.1.2])
with generating cofibrations I and generating trivial cofibrations J being

I = {∂∆[n]→ ∆[n]}, and I = {Λk[n]→ ∆[n]}.

By [Hir09, Theorem 11.3.2], the adjunction of θ and ψ generates a cofibrantly generated
right-induced model category on ∞-Grpd if:

(a) ∞-Grpd is complete and cocomplete.

(b) Both of the sets θ(I) and θ(J) permit the small object argument [Hir09, Definition
10.5.15].

(c) ψ commutes with directed colimits.

(d) A transfinite composition of weak equivalences in sSetQ is a weak equivalence.

(e) The pushout of a morphism from θ(J) by any morphism f in ∞-Grpd is a weak
equivalence.

First, consider the condition (a). By [Amr13, Lemma 7.8.], we know that the inclusion of
∞-groupoids in topological categories has a right adjoint. Then, Top-Cat being complete
implies that ∞-Grpd is also complete. Furthermore, because the functor h : Top-Cat→
Cat has a right adjoint (the inclusion), it commutes with colimits. Then, because the category
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of groupoids Grps is cocomplete, the restriction to ∞-groupoids h : ∞-Grpd → Grps
proves that ∞-Grpd is cocomplete.

The condition (b) follows directly from [Amr13, Lemma 2.5], and the condition (d) is a
well-known result. On the other hand, the condition (c) follows from k! and N< preserving
colimits. Consider any pushout in ∞-Grpd:

θ(Λk[n]) C

θ(∆[n]) D

f∼
y

By [Amr13, Lemma 2.2], f is a weak equivalence of topological categories. Then, ψf is a
weak equivalence in sSetQ because of Lemma 2.3.2.

Theorem 2.3.4 (Grothendieck homotopy hypothesis). The Quillen adjunction

θ : sSetQ �∞-Grpd : ψ

is a Quillen equivalence.

Proof. By [Hov07, Proposition 1.3.13], it is enough to prove that there is an equivalence of
homotopical categories between Ho(∞-Grpd) and Ho(sSetQ). First, we will prove that
the functor N< ◦Singe : ∞-Grpd → sSetQ is well-defined. By Corollary 2.2.21, for every
∞-groupoid C, N<(Singe(C)) is a Kan complex. Because of Remark 2.2.17, the functor
N< ◦Singe sends topological enriched weak equivalences (fibrations) to weak equivalences
(fibrations) in sSetQ. Therefore, N< ◦ Singe is a well-defined right Quillen functor.

Next, we want to prove that this right Quillen function induces an equivalence at the
homotopy category. As it is well-known, it is enough to prove that the functors are fully
faithful and essentially surjective. First, by the Quillen equivalence between Top-Cat
and sSetJ , there is an isomorphism Top-Cat(C,D)→ sSetJ (N<(Singe(C)),N<(Singe(D))).
Also, because N<(Singe(C)) and N<(Singe(C)) are Kan complexes, we have an equality

sSetJ(N<(Singe(C)),N<(Singe(D))) = sSetQ(N<(Singe(C)),N<(Singe(D))).

In addition, there is another equality Top-Cat(C,D) =∞-Grpd(C,D), thanks to C and D
being infinity groupoids and Lemma 2.3.2. Using these three facts, we know that there is
an isomorphism ∞-Grpd(C,D)→ sSetQ(N<(Singe(C)),N<(Singe(D))), which implies that
N< ◦Singe is fully faithful.

Now we want to prove that N< ◦ Singe is essentially surjective. From Proposition 2.2.25,
we know that there is a natural transformation X → k!(X) which is a weak equivalence of
sSetQ. Then, the map

X → k!(x)→ N<(Singe(|C(k!(X))|e))

is a weak equivalence of sSetQ, thanks to the unit map from the Quillen equivalence between
Top-Cat and sSetJ . Finally, because |C(k!(X))|e is an infinity groupoid, we know that
N< ◦Singe is essentially surjective.

On the other hand, for any infinity groupoid C, using Proposition 2.2.25, we know that
there is a trivial fibration k!(N<(Singe(C)))→ J(N<(Singe(C))) = N<(Singe(C)). Then, the
functor

ψ = k! ◦N< ◦Singe : Ho(∞-Grpd)→ Ho(sSetQ)

is an equivalence of homotopical categories, with left adjoint θ = | · |e ◦ C ◦k!. Therefore, the
adjunction θ : sSetQ �∞-Grpd : ψ induces a Quillen equivalence.
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The previous theorem proves that ∞-groupoids, as defined in Section 2.1, are homotopy
equivalent to topological spaces. In particular, it also proves that for every topological space
X there exists an ∞-groupoid defined by:

Π∞(X) := θ(Sing(X)) = |C(k!(Sing(X)))|e.

By the previous theorem and Theorem 1.4.20, we know that |ψ(Π∞(X))| ' X, which means
that Π∞(X) has the same homotopy type as the fundamental ∞-groupoid of X.

2.4 Moore path category

In the previous section, we have shown that there is a model for the homotopy type of a
topological space X as an ∞-groupoid. But this construction is not explicit. It is defined as
the composition of non-trivial functors, like C. In this section, we want to show that there
exist an explicit construction, which is defined as a topological category directly using the
information of the associated topological space.

Recall that a pointed space is a tuple (X,x) with x ∈ X. Furthermore, denote R+ :=
[0,∞), which can be viewed as a topological space with the Euclidean topology.

Definition 2.4.1. Let X be a topological space and x, y ∈ X. Define the Moore path space
in X between x and y as

PMx,yX = {(f, r) ∈ XR+ × R+ | f(0) = x and f(s) = y ∀s ≥ r},

with the product topology induced by the Euclidean topology on R+ and the compact-open
topology on XR+ . For any element (f, r) ∈ PMx,yX, r will be called the length of the path f .
Furthermore, the Moore loop space of a pointed space (X,x) is defined as ΩMx X = PMx,xX.

The standard path space Px,yX can be embedded into the Moore path space, assigning
always a length of 1 to each path. From this fact, the following properties follow:

Proposition 2.4.2. Let X be a topological space and x, y ∈ X. Then:

(i) The path space Px,yX is a deformation retract of the Moore path space PMx,yX. In
particular, Px,yX and PMx,yX are homotopy equivalent.

(ii) The loop space ΩxX is a deformation retract of the Moore loop space ΩM
x X. In

particular, ΩxX and ΩMx X are homotopy equivalent.

Proof. Observe that Px,yX ⊂ PMx,yX. Then, there is a deformation retract defined by the
inclusion i : Px,yX → PMx,yX and the retraction r : PMx,yX → Px,yX with r(f, r)(t) = f(t/r).
We clearly have r◦ i = IdPx,yX and i◦r ∼ IdPM

x,yX
, which implies that Px,yX is a deformation

retract of PMx,yX. Then, Px,yX and PMx,yX must be homotopy equivalent. The same argument
works with ΩxX and ΩMx X.

Define a topological monoid as a monoid object in the category of topological spaces. Let
tMon be the category of all topological monoids. A topological monoid G is group-like if
the set of path connected components π0(G) is a group with respect to the multiplication
induced by the monoid structure of G.
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Then, consider the following composition operation:

◦ : PMx,yX × PMy,zX −→ PMx,zX

((f, r), (g, s)) 7−→ (f ∗ g, r + s)
(2.2)

where f ∗ g denotes the path composition defined by

(f ∗ g)(t) =

{
f(t) if 0 ≤ t < r

g(t− r) if t ≥ r

This operation induces a structure over the Moore path spaces, which is stricter than the
one from the standard path spaces:

Proposition 2.4.3. The operation of Equation 2.2 is strictly associative, strictly unitary and
weakly invertible. In particular, for any topological space X, ΩMx X is a group-like topological
monoid with this operation.

Proof. The strict associativity and unity follow directly from the definition. To check the
weak invertibility, consider an element (f, r) ∈ PMx,yX. Then define an element (g, r) ∈ PMy,xX
by

g(t) =

{
f(r − t) if 0 ≤ t ≤ r
x if t > r

Thus, (f ∗ g, 2r) belongs to the same path component of ΩMy X as (cy, 0). The same happens
with (g ∗ f, 2r) and (cx, 0).

Observe that the previous property induces a monoidal structure on path spaces. This
structure can be realized as a topological category:

Definition 2.4.4. Let X be a topological space. Define the Moore path category ΠM
∞(X) as

the topological category with:

• The objects of ΠM
∞(X) are the points of X.

• For any two objects x, y ∈ ΠM
∞(X), the morphisms are ΠM

∞(X)(x, y) = PMx,yX.

• For any two objects x, y, z ∈ ΠM
∞(X), the composition is given by Equation 2.2.

• For every object x ∈ ΠM
∞(X), the identity is the constant path (cx, 0).

Remark 2.4.5. The Moore path category construction is in fact a functor. Any continuous
function f : X → Y induces a functor between topological categories ΠM

∞(f) : ΠM
∞(X) →

ΠM
∞(Y ) defined on objects by applying f , and on each homset by:

ΠM
∞(X)(x, y) −→ ΠM

∞(Y )(f(x), f(y))

(g, r) 7−→ (f ◦ g, r)

Remark 2.4.6. For any point x ∈ X, we can consider the topological category ΠM
∞({x}),

which has one object x and only one homset ΠM
∞({x})(x, x) = ΩM

x X. On the other hand,
define the delooping D : tMon→ Top-Cat0 as the functor that sends a topological monoid
M to the topological category with one object ∗ and Hom(∗, ∗) = M . Then, observe that we
can define trivial functors from D(ΩMx X) to ΠM

∞({x}), which send the object ∗ to x, and act
as the identity on the homset. In fact, these functors induce an equivalence of categories, i.e.,
D(ΩMx X) ∼= ΠM

∞({x}).
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Because we expect ΠM
∞(X) to be a model for the fundamental ∞-groupoid of the space

X, in particular, it should be an ∞-groupoid:

Proposition 2.4.7. For every topological space X, ΠM
∞(X) is an ∞-groupoid.

Proof. This is a direct consequence of the weak invertibility of the Moore paths, proved
in Proposition 2.4.3, and the definition of the homotopy category.

Before continuing our constructions, we need a new definition. A pointed space (X,x) is
called well-pointed if the inclusion {x} ↪→ X is a Hurewicz cofibration. In particular, any
pointed CW-complex is a well-pointed space. Furthermore, a topological monoid M with
identity element e is well-pointed if the pointed topological space (M, e) is well-pointed.

The goal of the rest of this section is to prove that the ∞-groupoid ΠM
∞(X) has the

homotopy type of the fundamental ∞-groupoid of the topological space X. Our proof is
inspired by [McG20], where the author uses the argument of [RZ18, Proposition 7.2]. This
argument includes the following claim:

Main Theorem. Let (X,x) be a path-connected well-pointed topological space. The topolog-
ical space |N<(Singe(DΩM

x (X)))| is a classifying space for ΩM
x (X), and as a consequence,

there is a natural weak homotopy equivalence

|N<(Singe(DΩMx X))| ' X.

We have not been able to find any reference proving this fact. As explained in the
Introduction, Chapter 3 will be devoted to introducing the theory of classifying spaces and
proving this theorem in detail. Thus, we can assume this theorem as proven, and complete
the last proof of this section:

Theorem 2.4.8. The ∞-groupoid ΠM
∞(X) is a model for the homotopy type of the topological

space X.

Proof. By definition of ΠM
∞ , the connected components of X induce disconnected topological

subcategories in ΠM
∞(X). Therefore, it is enough to consider X being connected. Then, the

desired weak equivalence will be the disjoint union of the weak equivalences between each
connected component.

Thus, we assume that X is connected. By Remark 2.4.6, for any point x ∈ X, the
∞-groupoid ΠM

∞({x}) is equivalent to DΩMx (X). Also, it is a subcategory of ΠM
∞(X). The

inclusion functor ΠM
∞({x}) ↪→ ΠM

∞(X) is fully faithful because it induces the identity of the
homset of x. Furthermore, it is essentially surjective at the homotopy categories, which
implies that the inclusion is in fact a weak equivalence. To sum up, studying ΠM

∞(X) up to
weak equivalence when X is connected is equivalent to studying ΠM

∞({x}) ∼= DΩMx (X).
Now we want to use the previously mentioned theorem. First observe that the well-pointed

hypothesis can be assumed, because if X is not well-pointed, |Sing(X)| will be well-pointed
and weakly equivalent to X. By the Main Theorem, because X is connected, we know that

|N<(Singe(DΩMx X))| ' X.

Then, applying Sing to the weak equivalence and composing with the unit map, we obtain

N<(Singe(DΩMx X)) ' Sing(X).

Because N< ◦ Singe is a right Quillen functor, it preserves weak equivalences between fibrant
objects. But all topological categories are fibrant, therefore, it preserves all weak equivalences.
Then, using ΠM

∞(X) ' ΠM
∞({x}) ∼= DΩMx (X), we have

N<(Singe(Π
M
∞(X))) ' N<(Singe(DΩMx (X))).
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By Proposition 2.2.25, for any Kan complex K, we have k!(K)
∼→ J(K) = K. Then,

using Theorem 2.3.4,

k!(N<(Singe(DΩMx (X)))) ' N<(Singe(DΩMx (X))) ' Sing(X).

Finally, recall that all simplicial sets are cofibrant, and since | · | is a left adjoint, it preserves
all weak equivalences. Thus, using the counit map,

|k!(N<(Singe(Π
M
∞(X))))| ' |k!(N<(Singe(DΩMx (X))))| ' X.

Finally, because |k!(N<(Singe(·)))| is a right Quillen functor, ΠM
∞(X) is a model of the

homotopy type of X. In particular, we have proven that Π∞(X) = |C(k!(Sing(X)))|e and
ΠM
∞(X) are weakly equivalent as ∞-groupoids.



Chapter 3

Models of the classifying space

As defined in the Introduction, a classifying space B(G) of a topological group G is
defined as the quotient of a weakly contractible space E(G) by a proper free action of G.
The first functorial construction of classifying spaces was due to Milnor [Mil56]. Later, Dold
and Lashof [DL59] presented a different functorial construction inspired by Milnor, which
applied also to any topological group-like monoid. Finally, Milgram [Mil67] refined Dold and
Lashof’s work, by formalizing the nowadays well-known bar construction.

In the previous chapter, we have been able to reduce the correctness of the model of the
fundamental∞-groupoid as a Moore path category to the following theorem about classifying
spaces:

Main Theorem. Let (X,x) be a path-connected well-pointed topological space. The topolog-
ical space |N<(Singe(DΩM

x (X)))| is a classifying space for ΩM
x (X), and as a consequence,

there is a natural weak homotopy equivalence

|N<(Singe(DΩMx X))| ' X.
The goal of this chapter is to prove this result in detail. Let M be a topological group-like

monoid. In the first section, we review the functorial classifying space B(M) as defined
by Milgram [Mil67]. The section is written following the survey of May [May75] about
the Milgram classifying space. The second section explores another functorial classifying
space based on a simplicial nerve different from the homotopy coherent nerve, the diagonal
simplicial nerve Nd : sSet-Cat → sSet. Using this nerve, the diagonal nerve classifying
space is defined as the functor

M 7→ |Nd(Singe(DM))|.
The aim of the second section is to prove that the diagonal nerve classifying space has
the same homotopy type as the Milgram classifying space, i.e., |Nd(Singe(DM))| ' B(M).
Finally, in the third section we define a functorial classifying space

M 7→ |N<(Singe(DM))|.
The proof of the Main Theorem follows from the equivalence |N<(Singe(DM))| ' B(M).
In order to prove this fact, we use the diagonal nerve classifying space and prove a weak
equivalence N<(C) ' Nd(C) for every fibrant simplicial category C with hC a groupoid.
Therefore, the main ideas behind the proof are shown in the following scheme:

|Nd(Singe(DM))| ' B(M)

N<(C) ' Nd(C)

}
 |N<(Singe(DM))| ' B(M)

29
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3.1 Classifying space of a monoid
First, we need to introduce the category of simplicial spaces sTop := Func(∆op,Top),

i.e., the category of simplicial objects internal to topological spaces. Given any topological
monoid, we can build a simplicial space with the following well-known construction:

Definition 3.1.1. Let M be a topological monoid with identity element e, and X, Y be
two topological spaces such that X is a right M -space, and Y is a left M -space. The bar
construction B̃(X,M, Y ) is a simplicial space with X ×Mn × Y as the space of n-simplices,
and for every 0 ≤ i ≤ n, the faces and degeneracies defined by

∂i(x,m1, . . . ,mn, y) =


(x ·m1,m2, . . . ,mn, y) if i = 0

(x,m1, . . . ,mi−1,mi ·mi+1,mi+2, . . . ,mn, y) if 1 ≤ i < n

(x,m1, . . . ,mn−1,mn · y) if i = n

si(x,m1, . . . ,mn, y) = (x,m1, . . . ,mi, e,mi+1, . . . ,mn, y)

Let ∗ denote the singleton topological space. Using the bar construction, we can define
two simplicial spaces associated to any topological monoid M , B̃(M) := B̃(∗,M, ∗) and
Ẽ(M) := B̃(∗,M,M). From this definition we can explicitly compute the simplices of those
simplicial spaces:

B̃0(M) = ∗ and B̃n(M) = Mn, Ẽ0(M) = M and Ẽn(M) = Mn+1.

The next step is obtaining a topological space related to those simplicial spaces. Given
any simplicial space, we can make a construction which is very similar to the geometric
realization from simplicial sets to topological spaces:

Definition 3.1.2. For any simplicial space X ∈ sTop, we define the topological geometric
realization of X as

|X|t =

∫ [n]∈∆

Xn ×∆n,

where the inner product is the one from Top.

Then, using the topological geometric realization, we can finally define the classifying
space of any topological monoid:

Definition 3.1.3. The Milgram classifying space B : tMon→ Top is the composition

B(M) := | B̃(M)|t =

∫ n∈∆

B̃n(M)×∆n =

∫ n∈∆

Mn ×∆n.

Let Top-Cat0 ⊂ Top-Cat be the category of topological categories with only one object,
sTop0 ⊂ sTop the category of simplicial spaces with a singleton as the 0-th level space.
There is another equivalent definition of this construction that goes back to Segal [Seg68].
First, consider the delooping functor D as defined in Remark 2.4.6. On the other hand, we
can apply the well-known nerve construction of a category to topological categories. The
topological nerve Nt : Top-Cat0 → sTop0 is a functor that for any DM ∈ Top-Cat0 with
Hom(∗, ∗) = M :

Nt
0(DM) = ∗ and Nt

n(DM) = Mn.

Thus, the previous definition of the bar construction for B̃(M) coincides with the following
composition:

B̃(M) = (Nt ◦D)(M). (3.1)
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This alternative definition of the simplicial space B̃(M) will be useful in the following sections.
In addition to the functorial construction, Milgram also proved that if the topological

monoid is group-like, then there is a natural weak equivalence relating the homotopy type of
M and its classifying space:

Theorem 3.1.4. [Mil67]. For any group-like topological monoid M , the natural map M 7→
Ω B(M) is a weak equivalence.

Example 3.1.5. Consider the Moore loop space ΩMx X, for some pointed topological space
(X,x). By Proposition 2.4.3, we know that ΩM

x X is a group-like topological monoid. The
classifying space of ΩMx X is

B(ΩMx X) = | B̃(ΩMx X)|t.

Therefore, by Theorem 3.1.4, we know that the natural map ΩMx X 7→ Ω B(ΩMx X) is a weak
equivalence. Furthermore, this example has an exclusive property related to ΩMx X being a
loop space:

Proposition 3.1.6. Let (X,x) be a path-connected pointed topological space. Then, there is
a natural weak homotopy equivalence

B(ΩMx X) ' X.

Proof. The proof is a consequence of the commutativity of the following diagram:

ΩMx X ΩMx X ΩMx X ΩMx X

PMx,•X | B̃(PMx,•X,Ω
M
x X,Ω

M
x X)|t | B̃(∗,ΩMx X,ΩMx X)|t E(ΩMx X)

X | B̃(PMx,•X,Ω
M
x X, ∗)|t | B̃(∗,ΩMx X, ∗)|t B(ΩMx X)e∗ q∗

p∗

where p∗ and q∗ are induced from the weak equivalence PMx,•X → ∗, thanks to PMx,•X

being weakly contractible; and e∗ is induced from the evaluation map e : PMx,•X → X with
e(f, r) = f(r). Because X is path connected, e∗ is also a weak equivalence, and the bottom
row is a zigzag of weak equivalences. Finally, because X is path connected, there is a map
from B(ΩMx X) to ΩMx X, which gives rise to the target map from B(ΩMx X) to X, which must
be a weak equivalence by the two-out-of-three property.

3.2 Diagonal simplicial nerve model
As previously mentioned, in this section we want to study a functorial classifying space

called the diagonal nerve classifying space, which is homotopy equivalent to the Milgram
classifying space. The name of this model comes from the main functor used in its definition:
the diagonal simplicial nerve Nd : sSet-Cat→ sSet. Unlike the homotopy coherent nerve,
the diagonal simplicial nerve does not induce a Quillen equivalence between simplicial
categories and simplicial sets. It will be defined similarly by the nerve and realization pattern,
as a nerve arising from a suitable cosimplicial object.

But there is an alternative definition, which predates the existence of the homotopy
coherent nerve, and helps to give an intuition of how the diagonal simplicial nerve works.
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Take any simplicial category C ∈ sSet-Cat, and consider its simplicial inclusion I(C) ∈ sCat
as defined in Remark 2.2.2. Then, apply the classical nerve of a category levelwise, obtaining
a bisimplicial set. Finally, take the diagonal of this bisimplicial set and define the resulting
simplicial set as the image Nd(C). This simplicial nerve appeared in the initial work of Dwyer
and Kan [DK80] about simplicial categories.

To obtain the functorial classifying space from Nd we just need to compose it with other
previously defined functors. First, precompose with Singe ◦D, which sends any topological
monoid to a simplicial category. Then, apply the geometric realization to the image of Nd,
obtaining a topological space. Thus, we define the diagonal nerve classifying space as the
functor M 7→ |Nd(Singe(D(M)))| for any topological monoid M . The goal of this section is
to prove that under some technical conditions on M there is a homotopy equivalence

|Nd(Singe(D(M)))| ' B(M). (3.2)

The proof of this fact will be proven in two subsections. In the first one, we study the
relation between the topological geometric realization and the usual geometric realization.
In the second one, we define the diagonal simplicial nerve, show its main properties, and
prove Equation 3.2 using the results from the previous subsection.

3.2.1 Topological geometric realization

In this subsection we want to prove a weakly homotopy equivalent factorization of the
topological geometric realization through the classical geometric realization. This weak
homotopical factorization will be used later in the proof of the diagonal nerve classifying
space.

For a general simplicial space, the topological geometric realization does not preserve
levelwise weak equivalences as weak equivalences of topological spaces. This fact motivates
the definition of an alternative geometric realization which will have the desired property of
preserving levelwise weak equivalences:

Definition 3.2.1. For any simplicial space X ∈ sTop, we define the fat geometric realization
as

‖X‖t =

∫ [n]∈∆+

Xn ×∆n

where ∆+ denotes the subcategory of ∆ without the degeneracy maps (sometimes called
Delta sets), and the product is the one from Top.

Proposition 3.2.2. [Seg74, Proposition A.1.(ii)]. Let X,Y ∈ sTop. If f : X → Y is a
levelwise weak homotopy equivalence, then the induced map ‖X‖t → ‖Y ‖t is a weak homotopy
equivalence of topological spaces.

Next, consider a subclass of all simplicial spaces, the good simplicial spaces, which can
be proven to have weakly equivalent geometric realizations. In particular, good simplicial
spaces preserve levelwise weak equivalence with any of the two geometric realizations.

Definition 3.2.3. A simplicial space X is good if all degeneracy maps dn : Xn−1 → Xn are
closed Hurewicz cofibrations.

Proposition 3.2.4. [Seg74, Proposition A.1.(iv)]. If a simplicial space X is good, then
‖X‖t ' |X|t.
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Proposition 3.2.5. Let f : X → Y be a levelwise weak homotopy equivalence of simplicial
spaces. If X and Y are good simplicial spaces, then the induced map |X|t → |Y |t is a weak
homotopy equivalence of topological spaces.

Proof. Follows directly from Proposition 3.2.2 and Proposition 3.2.4.

Because we are working with simplicial spaces obtained using the bar construction, it
is natural to ask under which conditions on the topological monoid the bar construction is
good.

Proposition 3.2.6. If M is a well-pointed monoid, then B̃(M) is a good simplicial space.

Proof. By [Tsu16, Lemma 5.5.(i)], we know that all degeneracy maps dn : B̃n−1(M)→ B̃n(M)
are Hurewicz cofibrations. Because we are only considering compactly generated weakly
Hausdorff spaces, any Hurewicz cofibration is closed, and therefore B̃(M) is a good simplicial
space.

Let (X,x) be a well-pointed topological space as defined in Section 2.4. Then, ΩMx X is a
well-pointed topological monoid. Using the previous property, we know that B̃(ΩMx X) is a
good simplicial space.

Now we introduce functors to translate between simplicial spaces and bisimplicial sets.
Those functors are basically a levelwise application of the usual singular simplicial set and
geometric realization:

Definition 3.2.7. The levelwise singular chain functor Sing` : sTop → bSet for all
X ∈ sTop and all n,m ∈ N is

(Sing`(X))n,m = Singm(Xn).

Similarly, the levelwise geometric realization | · |` : bSet→ sTop for all S ∈ bSet and all
n ∈ N is

(|S|`)n = |Sn,•| =
∫ n∈∆

Sn,• ⊗∆n.

Lemma 3.2.8. [Seg74, Proposition A.3]. For every simplicial space X, |Sing`(X)|` is good.

Lemma 3.2.9. Let X ∈ sTop be a simplicial space. The natural morphism

|Sing`(X)|` → X

is a levelwise weak homotopy equivalence of topological spaces.

Proof. By Proposition 1.4.19, the counit map εXn
: |Sing`(Xn)|` → Xn is a weak equivalence

of topological spaces for every n ∈ N.

On the other hand, we can consider two different functors between bisimplicial sets and
simplicial sets. After the definitions, we give two very well-known properties of these functors:

Definition 3.2.10. Define the following functors:

(i) The diagonal d : bSet→ sSet for all S ∈ bSet and all n ∈ N as (d(S))n = Sn,n.

(ii) The simplicial geometric realization | · |s : bSet→ sSet for all S ∈ bSet and all n ∈ N
as

(|S|s)n =

∫ n∈∆

Sn,• ×∆[n].
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Proposition 3.2.11. [GJ09, Proposition 1.7]. If a map f : S → R of bisimplicial spaces is
a levelwise weak equivalence, then the induced map f∗ : d(S)→ d(R) is a weak equivalence
of simplicial sets.

Proposition 3.2.12. [GJ09, Chapter IV, Section 1]. For every S ∈ bSet there is a natural
isomorphism of simplicial sets d(S) ∼= |S|s.

Finally, we are ready to prove the desired weak homotopical factorization for good
simplicial spaces:

Theorem 3.2.13. If X is a good simplicial space, then

|d(Sing`(X))| ' |X|t,

which is equivalent to the commutativity up to weak equivalence of the following diagram:

Top

sSet bSet sTop
Sing`

|·| |·|t

d

Proof. By Proposition 3.2.12, it is known that d(S) ∼= |S|s. Then, taking the geometric
realization of this homeomorphism:

|d(S)| ∼= |(|S|s)|

=

∣∣∣∣∣
∫ n∈∆

Sn,• ×∆[n]

∣∣∣∣∣
∼=
∫ n∈∆

|Sn,• ×∆[n]| (Using that | · | is a left adjoint functor)

∼=
∫ n∈∆

|Sn,•| × |∆[n]| (Using that | · | commutes with finite limits)

=

∫ n∈∆

(|S|`)n ×∆n

= |(|S|`)|t.

Then, there is a homeomorphism α : |d(Sing`(X))| ∼= |(|Sing`(X)|`)|t.
On the other hand, using Lemma 3.2.9, we know that there is a natural levelwise

weak homotopy equivalence |Sing`(X)|` → X. Also, by Lemma 3.2.8, |Sing`(X)|` is good.
Finally, using Proposition 3.2.5, the previous levelwise weak homotopy equivalence induces
|(|Sing`(X)|`)|t ' |X|t, and composing with the homeomorphism α we obtain the desired
weak equivalence.

3.2.2 Diagonal simplicial nerve

As mentioned before, the diagonal simplicial nerve can be defined using a cosimplicial
object in sSet-Cat, following the same pattern used to define the homotopy coherent nerve:

Definition 3.2.14. Let [n] ∈ ∆. Define the diagonal simplicial category ∆d[n] ∈ sSet-Cat
as the simplicial category with:
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• Obj(∆d[n]) = [n] = {0, . . . , n}.
• Morphisms and composition of ∆d[n] are freely generated by the n-simplices ai ∈

Hom(i− 1, i) for all i = 1, . . . , n.

Proposition 3.2.15. The map [n] 7→ ∆d[n] defines a covariant functor, i.e., ∆d is a
cosimplicial object in sSet-Cat.

Proof. Given a non-decreasing morphism f : [m]→ [n], we only need to define the induced
morphism f∗ : ∆d[m]→ ∆d[n]. At the level of the objects f∗ is simply the application of f .
Denote ai the generators of the morphisms of ∆d[m] and bi the ones from ∆d[n]. Then we
only need to define the image of ai ∈ Hom(i− 1, i) for i = 1, . . . ,m. This can be defined as
f∗(ai) = af(i) ∈ Hom(f(i− 1), f(i)), which is an m-simplex contained in the n-simplex bf(i).
Therefore, the map [n] 7→ ∆d[n] defines a covariant functor.

Then, we can define a nerve and realization from this cosimplicial object. In this case, it
turns out that we are only interested in the nerve, which follows Definition 1.4.4:

Definition 3.2.16. Define the diagonal simplicial nerve Nd : sSet-Cat → sSet as the
following functor for any C ∈ sSet-Cat:

Nd
n(C) := N∆d

n (C) = sSet-Cat(∆d[n], C).

Now that we have defined the diagonal simplicial nerve, we need a way to prove that
it induces a functorial classifying space. Recall that we want to define the diagonal nerve
classifying space as the functor

M 7→ |Nd(Singe(D(M)))|.

To prove that this functor realizes a classifying space, we will show that the following diagram
commutes up to weak equivalence:

Top

(1)

sSet0 bSet0 sTop0

(2)

sSet-Cat0 Top-Cat0Singe

Sing`

|·| |·|t

d

Nd Nt

Observe that the triangle from (1) is equivalent to Theorem 3.2.13 proven in the last
subsection. Thus, it is enough to prove that the rectangle (2) commutes up to isomorphism.

In order to prove the commutativity of (2), we need to study some more properties of
the diagonal simplicial nerve. First, consider the characterization introduced above of the
diagonal simplicial nerve as composition of functors, which appeared in the work of Dwyer
and Kan [DK80]. To prove it, we need the functors presented before. The simplicial inclusion
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I has been defined in Remark 2.2.2, and the levelwise nerve N` : sCat→ bSet can be defined
as the functor which sends any C• ∈ sCat to

(N`(C•))n,m = Nm(Cn).

Lemma 3.2.17. Let C be a simplicial category. Then

Nd(C) = d(N`(I(C))),

which is equivalent to the commutativity of the following diagram:

sSet bSet

sSet-Cat

d

Nd

N` ◦ I

Proof. By definition, Nd
n(C) = sSet-Cat(∆d[n], C). Because ∆d[n] is determined by the n

generating n-simplices ai, all the functors of Nd
n(C) are determined by the image of these

simplices. Then, the images of the generating n-simplices ai are n composable n-simplices of
homsets of C.

Now consider the right term. By the same argument of the previous proof, we know that
N`(I(C)) is defined as a bisimplicial set which for every n,m ∈ N has a set N`

n(Im(M)) which
contains all tuples of n composable morphisms that are m-simplices of C. Thus, taking the
diagonal, we obtain a simplicial set with all n composable n-simplices of homsets of C at
level n, exactly the same as before.

Corollary 3.2.18. The diagonal simplicial nerve preserves weak equivalences.

Proof. Let C and D be two simplicial categories with a weak equivalence between them
F : C ∼→ D. Then, we have weak equivalences of simplicial sets C(X,Y )

∼→ D(FX,FY ) for
each X,Y ∈ C. Consider the bisimplicial sets N`(I(C)) and N`(I(D)). If we fix n ∈ N we
obtain the levelwise simplicial sets N`

n(I(C)) and N`
m(I(C)). Then, N`

n(I(C)) is a simplicial
set with all n composable n-simplices of homsets of C at level n. Thus, taking compositions
of weak equivalences between homsets of C and D, it follows that there is a levelwise weak
equivalence N`

n(I(C)) ∼→ N`
m(I(C)). Finally, by Proposition 3.2.11, this induces a weak

equivalence between Nd(C) = d(N`(I(C))) and Nd(D) = d(N`(I(D))).

Lemma 3.2.19. Let X be a topological category with only one object. Then

Sing`(N
t(X )) ∼= N`(I(Singe(X ))),

which is equivalent to the commutativity up to isomorphism of the following diagram:

bSet0 sTop0

sSet-Cat0 Top-Cat0Singe

Sing`

Nt

N` ◦ I
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Proof. Assume that ∗ ∈ X is the only object of X , and M := Hom(∗, ∗). First we will
compute the left side. Nt(X ) is a simplicial space with Nt(X )n = Mn and Nt(X )0 = ∗.
Then, Sing`(N

t(X )) is a bisimplicial set, which for every n,m ∈ N has a set Singm(Nt
n(X )) =

Singm(Mn) and Singm(Nt
0(X )) = Singm(∗) = ∗.

Now consider the right side. Singe(X ) is a simplicial category with one object ∗ and
Hom(∗, ∗) = Sing(M). Then, I(Singe(X )) is a simplicial object in Cat such that for each
m ∈ N, Im(Singe(X )) is a category with only one object ∗ and morphisms Hom(∗, ∗) =
Singm(M). Finally, N`(I(Singe(X ))) is defined as a bisimplicial set which for every n,m ∈ N
has a set N`

n(Im(Singe(X ))) = N`
n(Singm(M)) = (Singm(M))n and N`

0(Im(Singe(X ))) =
N`

0(Singm(M)) = ∗.
Because Sing is a right adjoint functor, it preserves limits. In particular, we have an

isomorphism

Singm(Nt
n(X )) = Singm(Mn) ∼= (Singm(M))n = N`

n(Im(Singe(X ))).

Thus, we are finally ready to prove that the rectangle (2) commutes up to isomorphism,
which is equivalent to the following theorem:

Theorem 3.2.20. Let X be a topological category with only one object. Then

d(Sing`(N
t(X ))) ∼= Nd(Singe(X )).

Proof. Finally, we just need to join the two previous lemmas. Recall that the theorem is
equivalent to proving a commuting rectangle, which we can divide in the two commutative
diagrams from the lemmas:

sSet0 bSet0 sTop0

sSet-Cat0 Top-Cat0Singe

Sing`

d

Nd Nt

N` ◦ I

Let X be a topological category with only one object. Then, by Lemma 3.2.19,

Sing`(N
t(X )) ∼= N`(I(Singe(X ))).

Now, we can apply the d functor to obtain an isomorphism of simplicial sets

d(Sing`(N
t(X ))) ∼= d(N`(I(Singe(X )))).

Finally, by Lemma 3.2.17 we know that

Nd(Singe(X )) = d(N`(I(Singe(X )))),

which directly implies the desired isomorphism.

Corollary 3.2.21. Let M be a well-pointed group-like topological monoid. Then

|Nd(Singe(DM))| ' |Nt(DM)|t = B(M).

i.e., the functor M 7→ |Nd(Singe(DM))| is a classifying space of M .
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Proof. Proving this fact is equivalent to showing that the exterior arrows of the following
diagram commute up to weak equivalence:

Top

(1)

sSet0 bSet0 sTop0

(2)

sSet-Cat0 Top-Cat0Singe

Sing`

|·| |·|t

d

Nd Nt

Observe that, by Theorem 3.2.13, we know that the upper triangle (1) commutes up to weak
equivalence. On the other hand, proving the commutativity up to isomorphism of the bottom
rectangle (2) is equivalent to Theorem 3.2.20. Then, the desired result follows directly thanks
to | · | preserving weak equivalences.

3.3 Homotopy coherent nerve model

In this section, we want to finally prove that the functor M 7→ |N<(Singe(D(M)))| is a
classifying space of M . Observe that the classifying space presented in the previous section
has the same construction, only replacing the homotopy coherent nerve with the diagonal
simplicial nerve. Then, it will be enough to prove that there is a weak equivalence between
the diagonal simplicial nerve and the homotopy coherent nerve N<(C) ' Nd(C) for every
fibrant simplicial category C with hC being a groupoid.

The existence of the weak equivalence between the diagonal simplicial nerve and the
homotopy coherent nerve is inspired by the work of Hinich [Hin07]. In the following subsection,
another simplicial nerve will be introduced: the total simplicial nerve. A simplicial groupoid
is a simplicial category which, if considered as a simplicial object in Cat, is a groupoid at
each one of the levels. Considering only simplicial groupoids, we prove the existence of a
weak equivalence from the diagonal simplicial nerve to the total simplicial nerve, and another
one from the total simplicial nerve to the homotopy coherent nerve. In the second subsection,
we generalize this result from simplicial groupoids to fibrant simplicial category with the
homotopy category being a groupoid. This generalization is achieved by using simplicial
localization as defined by Dwyer and Kan [DK80].

3.3.1 Total simplicial nerve

We begin with the definition of the total simplicial nerve using a different cosimplicial
object, as we have done with the two previous nerve functors:

Definition 3.3.1. The total cosimplicial object ∆T [n] ∈ sSet-Cat is defined as follows:

• Obj(∆T [n]) = [n] = {0, . . . , n}.
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• Morphisms and composition of ∆T [n] are freely generated by (n − i)-simplices gi ∈
Hom(i− 1, i) for i = 1, . . . , n.

Proposition 3.3.2. The map [n] 7→ ∆T [n] defines a covariant functor, i.e., ∆T is a
cosimplicial object in sSet-Cat.

Proof. We will prove the cosimplicial structure defining the image of the generating morphisms
of the ∆ category. First, the map δni : [n− 1]→ [n] has as image ∂ni : ∆T [n− 1]→ ∆T [n]
which for any generating morphism gj ∈ Hom(j − 1, j) is defined by

∂ni (gj) =


dn−jn−1−j(gj) if i = n− 1

dn−ji−j (gj) if i 6= n− 1 and j < i

gi+1 ◦ dn−i0 (gi) if i 6= n− 1 and j = i

gj+1 if i 6= n− 1 and j > i.

On the other hand, the map σni : [n]→ [n− 1] has as image ωni : ∆T [n]→ ∆T [n− 1], which
for any generating morphism gj ∈ Hom(j − 1, j) is defined by

ωni (gj) =


sn−ji−j (gj) if j < i+ 1

Idj if j = i+ 1

gj−1 if j > i+ 1.

Thus, we can define a nerve and realization from the cosimplicial objects ∆T [n] following
the construction in Definition 1.4.4. We will only use the nerve functor:

Definition 3.3.3. The total simplicial nerve NT : sSet-Cat → sSet is defined for every
C ∈ sSet-Cat as

NT
n (C) := N∆T

n (C) = sSet-Cat(∆T [n], C).

This simplicial nerve, similarly to the diagonal simplicial nerve, has a characterization
using well-known functors. The functor used here is the classifying complex W : sGrp→ sSet
defined on every simplicial group G as

Wn(G) = Gn−1 × Gn−2 × · · · × G0.

Then, we can prove the following characterization for simplicial groups:

Proposition 3.3.4. If G is a simplicial group, NT
n (D(G)) = W (G).

Proof. By definition, Wn(G) = Gn−1 × Gn−2 × · · · × G0. On the other hand, consider the
simplicial category D(G), which has one object ∗ and morphisms Hom(∗, ∗)n = Gn. Then,
for each n ∈ N, the total simplicial nerve is defined by all the functors from ∆T [n] to D(G).
These functors are determined by the image of the generating morphisms of ∆T [n]. Thus,
each functor is determined by choosing one element from each set Gn−1,Gn−2, . . . , and G0,
i.e.,

NT
n (D(G)) = Gn−1 × Gn−2 × · · · × G0 = Wn(G).

Now, we want to prove the weak equivalences between the three previously defined
simplicial nerves restricted to simplicial groupoids. First, define the following map of
cosimplicial objects:

α : ∆T → ∆d

such that for each n ∈ N it defines the identity map on objects, and it is defined on the
generating morphisms as

αn(gi) = (dn0 )ifi.
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Proposition 3.3.5. Let C ∈ sSet-Cat. If C is simplicial groupoid, then there is weak
equivalence Nd(C) ' NT (C).

Proof. First, observe that the induced map is:

α∗ = Hom(α, C) : Nd(C) −→ NT (C)
(f1, f2, . . . , fn) 7−→ (dn0f1, (d

n
0 )2f2, . . . , (d

n
0 )nfn)

Let us assume that C is connected, otherwise this argument will apply component-wise.
Because C is a connected simplicial groupoid, it is equivalent to a simplicial group G
generated by one of the objects ∗ and the homset Hom(∗, ∗). Because G is a simplicial group,
to prove that α∗ is a weak equivalence we only need to show that it has the RLP with respect
to the maps ∂∆[n]→ ∆[n].

First, we need to choose suitable maps. Pick the map ∆[n] → NT
n (G) with image

g = (g1, . . . , gn) and gi ∈ Homn−i(i − 1, i). Also, the map ∂∆[n] → Nd
n−1(G), which for

each 0 ≤ i ≤ n − 1 has as image of the i-th face of ∆[n] the tuple of (n − 1)-simplices
xi = (xi1, . . . , x

i
n−1). Then, we want to find a map ∆[n] → Nd

n(G), which is equivalent to
choosing a tuple f = (f1, . . . , fn) which commutes with the other maps.

The two maps defined satisfy the relations dn−1
i (xk) = dn−1

k−1(xi) for all i < k and
α∗(xi) = dni (g). The desired map f has to satisfy dni f = xi and α∗(f) = g, which is
equivalent to the three following conditions:

1. (dn0 )j(fj) = gj ,

2. dni (fj) =

{
xij if i ≥ j + 1

xij−1 if i ≤ j − 2,

3. dnj−1(fj) ◦ dnj−1(fj−1) = xj−1
j−1.

Finally, we can deduce the values of fj by induction. Imposing the desired conditions and
using that G is fibrant, we can easily obtain f1. For the rest, we want to construct fj assuming
fi for all i < j. The technical details can be found in [Hin01, Section A.5.1]. Therefore, we
have proven that α∗ is a weak equivalence.

The previous weak equivalence allows us to write an unusual proof of the geometric
realization of the classifying complex W having the homotopy type of the Milgram classifying
space for every simplicial group. The classifying complex realizing the classifying space
is a well-known fact in the literature, and similar factorizations can be found in [CR05]
and [Ste11].

Corollary 3.3.6. Let G be a well-pointed topological group. Then

B(M) = | B̃(G)|t ' |W (Sing(G))|,

i.e., the functor G 7→ |W (Sing(G))| is a classifying space of G.

Proof. First observe that any well-pointed topological group is a well-pointed group-like
monoid, which implies that B(M) is well-defined.

On the other hand, observe that Sing(G) is a simplicial group. Hence, Sing(G) can be
considered as a simplicial category with one object D(Sing(G)). By Proposition 3.3.4, we
know that

W (Sing(G)) = NT (D(Sing(G))) = NT (Singe(D(G))).
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Then, we can use Proposition 3.3.5, obtaining

Nd(Singe(D(G))) ' NT (Singe(D(G))) = W (Sing(G)).

Finally, by Corollary 3.2.21, because the geometric realization of the diagonal nerve is a
model of the classifying space, we obtain the desired result:

B(M) ' |Nd(Singe(D(G)))| ' |NT (Singe(D(G)))| = |W (Sing(G))|.

Now we will construct another map between simplicial nerves. This time we want to
prove that there exists a unique map between the simplicial objects ∆< and ∆T .

Lemma 3.3.7. There exists a unique map between the simplicial objects

β : ∆< → ∆T

which is bijective on objects.

Proof. Define βn : ∆<[n]→ ∆T [n], the component maps of β. Because the simplicial sets of
morphisms of each ∆<[n] and ∆T [n] are nerves of posets, the map βn is uniquely defined
by the restriction on 0-simplices, which must be monotone. We already know that the only
indecomposable 0-simplices of ∆<[n] are the sets {a, b} ∈ Hom(a, b) for every 0 ≤ a < b ≤ n.
Then, to define βn, we only need to give the image of those 0-simplices in a way that βn is
monotone.

First consider the case n = 1. The simplicial category ∆<[1] has two objects and one
non-trivial homset, Hom(0, 1), which has one non-degenerate indecomposable 0-simplex
{0, 1}. On the other hand, ∆T [1] has two objects and also one non-trivial homset, Hom(0, 1),
which also contains a generating 0-simplex g0. Then, we must define β1(0) = 0, β1(1) = 1
and β1({0, 1}) = g1.

Now consider the map ϕ : [1] → [n] defined by ϕ(0) = a and ϕ(1) = b. We can reduce
this monotone map to a composition of faces:

ϕ = ∂b+1
n ◦ ∂b+1

n−1 ◦ · · · ◦ ∂
b+1
b+1 ◦ ∂

a+1
b ◦ · · · ◦ ∂a+1

a+2 ◦ ∂0
a+1 ◦ · · · ◦ ∂0

2 . (3.3)

Because β is a map between cosimplicial objects, the induced maps from ϕ to each cosimplicial
object, denoted ϕ∗< : ∆<[1] → ∆<[n] and ϕ∗T : ∆T [1] → ∆T [n], must make the following
diagram commutative:

∆<[1] ∆T [1]

∆<[n] ∆T [n]

ϕ∗<

βn

ϕ∗T

βn

Then, we know that ϕ∗<({0, 1}) = {ϕ(0), ϕ(1)} = {a, b}, and using the commutativity, we
obtain

βn({a, b}) = βn(ϕ∗<({0, 1})) = ϕ∗T (β1({0, 1})) = ϕ∗T (g1).

Using the formulas of Proposition 3.3.2 and Equation 3.3, we can compute this last term as

βn({a, b}) = ϕ∗T (g1) = dn−b1 (gb) ◦ dn−b1 (d0(gb−1)) ◦ · · · ◦ dn−b1 (db−a−1
0 (ga+1)).

Finally, it is clear that this definition is monotone, because using d1x < d0x and the previous
equation, we have βn({b, c})βn({a, b}) < βn({a, c}).
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Finally, we want to see that the induced map between the simplicial nerves is also a weak
equivalence for simplicial groupoids:

Proposition 3.3.8. Let C ∈ sSet-Cat. If C is simplicial groupoid, then there is weak
equivalence NT (C) ' N<(C).

Proof. First assume that C is connected, otherwise this argument will apply component-wise.
Because C is a connected simplicial groupoid, it is equivalent to a simplicial group generated
by one of the objects ∗ and the homset Hom(∗, ∗). By Proposition 3.3.4 and the fact that W
models the classifying space of a simplicial group, we know that

πn(NT (C)) = πn(W (Hom(∗, ∗))) = πn−1(Hom(∗, ∗)).

Then, proving that the desired map is a weak equivalence corresponds to proving that
πn(N<(C)) = πn−1(Hom(∗, ∗)).

Thanks to Proposition 2.2.20, we know that N<(C) is a Kan complex. Let Sn =
∆[n]/∂∆[n] and Dn+1 = ∆[n + 1]/

⋃
i>0 ∂

i(∆[n]). The face map induces an embedding
Sn → Dn+1, which, using that N<(C) is a Kan complex, implies that

πn(N<(C)) = Hom(Sn,N<(C))/Hom(Dn+1,N<(C))
= Hom(∆<(Sn), C)/Hom(∆<(Dn+1), C).

By Example 2.2.14, we know that ∆<(Sn) is a simplicial category with one object and
automorphism set equal to S1 ∧ · · · ∧ S1 (n− 1 times). Furthermore, by Example 2.2.15, we
know that ∆<(Dn+1) is a simplicial category with one object and automorphism set equal
to I ∧ S1 ∧ · · · ∧ S1 (n − 1 times). Observe that S1 ∧ · · · ∧ S1 (n − 1 times) is homotopy
equivalent to Sn−1 and I ∧ S1 ∧ · · · ∧ S1 (n− 1 times) is homotopy equivalent to Dn. Also,
remember that each simplicial groupoid is in particular a fibrant simplicial category. Thus,
using that Hom(∗, ∗) is a Kan complex because C is a fibrant simplicial category, we have
πn(N<(C)) = πn−1(Hom(∗, ∗)), as we wanted to prove.

3.3.2 Simplicial localization

In this subsection, we want to extend the weak equivalence between nerves of simplicial
groupoids presented previously. We will be able to extend it to fibrant simplicial categories
whose homotopy category is a groupoid. This will be done using the simplicial localization
as defined by Dwyer and Kan [DK80].

Let bSet-Cat be the category of categories enriched in bisimplicial sets. First, we need
to define simplicial localization, and gather the necessary properties of this construction. To
introduce the simplicial localization, we need to define the following:

Definition 3.3.9. (i) Given a category C, the free category on C is a category F1 C which
has the same objects as C and has one generator for each non-identity map. Then,
define the free resolution on C as the simplicial category F∗ C which has the same
objects as C and as n-simplices it has the morphisms of Fn C := Fn1 C. In the case of
simplicial categories, the free resolution is in fact a bisimplicially enriched category,
taking the free resolution at each level.

(ii) Define the simplicial diagonal de : bSet-Cat → sSet-Cat as taking the diagonal of
each homset.
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Definition 3.3.10. Let C be a simplicial category and W a subcategory. The simplicial
localization of C with respect to W is a simplicial category defined by

L(C,W) := de(F∗ C[(F∗W)−1]).

Lemma 3.3.11. Let C be a simplicial category. Then L(C, C) is a simplicial groupoid.

Proof. Recall that L(C, C) = de(F∗ C[(F∗ C)−1]). Then, for each n ∈ N, the induced category
of the objects of L(C, C) and the n-simplices of L(C, C) is the full localization of the n-th free
category generated by the n-simplex of C. Therefore, all n-morphisms are invertible.

Lemma 3.3.12. If C is a cofibrant simplicial category with hC a groupoid, then the localization
map C → L(C, C) is a weak equivalence.

Proof. By Theorem 2.2.8 and using that C is cofibrant simplicial groupoid, we know that
there exists a weak equivalence C → Fn C, which arises from the fact that cofibrant objects are
retracts from free objects. Observe that the formal inversion morphism Fn C → Fn C[(Fn C)−1]
is also a weak equivalence thanks to C being a simplicial category with hC a groupoid. Then,
composing the two maps and taking the diagonal, we obtain the desired weak equivalence
C → L(C, C).

Consider the composition of the two maps between cosimplicial objects defined in the
previous subsection, and denoted by

τ : ∆< → ∆d. (3.4)

Using all the previous results, we are ready to prove the following theorem, relating the
homotopy coherent nerve with the diagonal simplicial nerve. Using this theorem and Corol-
lary 3.2.21, we can finally prove that the homotopy coherent nerve gives a functorial classifying
space of a topological monoid:

Theorem 3.3.13. For every fibrant simplicial category C with hC a groupoid, the induced
map Nd(C)→ N<(C) is a homotopy equivalence of simplicial sets.

Proof. First, take a cofibrant replacement of C, QC : C̃ ∼−→ C. Because C is fibrant, C̃ will be
also fibrant. Then, there are associated maps

Nd(QC) = Hom(∆d, QC) : Nd(C̃)→ Nd(C), and

N<(QC) = Hom(∆<, QC) : N<(C̃)→ N<(C).

By Corollary 3.2.18 and QC being a weak equivalence, Nd(QC) is a weak equivalence. Then,
thanks to Proposition 2.2.19, C and C̃ being fibrant simplicial categories, and QC being a
weak equivalence, we have that N<(QC) is a weak equivalence too.

Because C̃ is a cofibrant simplicial category with hC̃ a groupoid, Lemma 3.3.12 proves
that there exists a weak equivalence `C̃ : C̃ ∼−→ L(C̃, C̃). This map `C̃ has the associated
morphisms

Nd(`C̃) = Hom(∆d, `C̃) : Nd(C̃)→ Nd(L(C̃, C̃)), and

N<(`C̃) = Hom(∆<, `C̃) : N<(C̃)→ N<(L(C̃, C̃)).

Observe that because of Lemma 3.3.11, we know that L(C̃, C̃) is a simplicial groupoid, which
in particular is also a fibrant simplicial category. Then, by the same arguments as before,
Nd(`C̃) and N<(`C̃) are weak equivalences.
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On the other hand, consider the map of Equation 3.4, which for every simplicial category
D induces

τ∗D = Hom(τ,D) : Nd(D)→ N<(D).

Thanks to Proposition 3.3.8 and Proposition 3.3.5, if D is a simplicial groupoid, τ∗D is a weak
equivalence. Then, using Lemma 3.3.11, we know that τ∗

L(C̃,C̃)
is a weak equivalence.

Finally, by naturality of the Hom bifunctor, we know that the following diagram commutes:

Nd(L(C̃, C̃)) N<(L(C̃, C̃))

Nd(C̃) N<(C̃)

Nd(C) N<(C)

τ∗
L(C̃,C̃)

Nd(`C̃) N<(`C̃)

τ∗C̃

Nd(QC) N<(QC)

τ∗C

Observe that by the previous arguments all the solid arrows are weak equivalences. Thus,
using the commutativity and the two-out-of-three property, it follows directly that the upper
dotted arrow is a weak equivalence, and using this fact, we can prove by the same argument
that the bottom dotted arrow is a weak equivalence.

Corollary 3.3.14. Let M be a well-pointed group-like topological monoid. Then

B(M) = | B̃(M)|t ' |N<(Singe(DM))|,

i.e., the functor M 7→ |N<(Singe(DM))| is a classifying space of M .

Proof. By Corollary 3.2.21, we know that

B(M) = | B̃(M)|t ' |Nd(Singe(DM))|.

On the other hand, by Theorem 3.3.13, Nd(C) ' N<(C) for every weak fibrant simplicial
groupoid C. We know that Singe(D(M)) is always a fibrant simplicial category. Also, because
M is a group-like topological monoid, Singe(D(M)) is a fibrant simplicial category with
h(Singe(D(M))) a groupoid. Thus, we have

Nd(Singe(D(M))) ' N<(Singe(D(M))).

Finally, we know that | · | preserves weak equivalences, which implies the desired result.

Thus, using previous results, we can deduce the proof of Main Theorem. This theorem
is basically a direct consequence of the previous functorial classifying space, together with
particular properties of the Moore path loop space:

Main Theorem. Let (X,x) be a path-connected well-pointed topological space. The topolog-
ical space |N<(Singe(DΩM

x (X)))| is a classifying space for ΩM
x (X), and as a consequence,

there is a natural weak homotopy equivalence

|N<(Singe(DΩMx X))| ' X.

Proof. Follows directly from the previous corollary applied to ΩMx X and Proposition 3.1.6.



Chapter 4

Application to homotopy type
theory

As mentioned in the Introduction, the objective of this last chapter is to assess whether the
model of the fundamental∞-groupoid as a Moore path category can help to the interpretation
of results from homotopy type theory. The first section of this chapter introduces the basics
of homotopy type theory. In the second one, we offer a review of the first homotopical
models of homotopy type theory, and explain the relation between types and ∞-groupoids.
In the last section, we study whether Moore path categories are a useful tool for proving
that the type-theoretic definition of well-known topological spaces as higher inductive types
corresponds to the ∞-groupoids of these spaces.

4.1 Homotopy type theory
A Martin-Löf type theory is a deductive system based on judgements and rules of inference.

The judgements are the “propositions” of the deductive system, and the rules of inference
are used to derive new judgements from previous ones. Consequently, we can construct a
derivation tree “to prove” some judgement by indicating which rules of inference have been
used at each step.

Any Martin-Löf type theory has four different kinds of judgements. The first one is the
type declaration, denoted by ` A type, which means that A is a type. Whenever we know
that A is a type, we can introduce an element a of type A with the judgement of term
declaration ` a : A. The other two are equalities: the equality between terms ` a = b, and
the equality between types ` A = B.

Observe that judgements begin with the symbol `, commonly called turnstile. The
turnstile divides any judgement in two parts: the left side is the context, and the right side
the outcome. The context is used to introduce type dependency, which is one of the main
properties of Martin-Löf type theory, and is composed of a comma separated list of term
declarations. Notice that the previous judgements have an empty context, but could be also
found with any non-empty context. For instance, using type dependency, we can introduce a
family B indexed by A as the judgement

x : A ` B(x) type,

which means that for each element a : A, B(a) is a type.

45
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On the other hand, we have the rules of inference. Any rule of inference has a finite set
of judgements as assumptions, and a unique judgement as conclusion. For example, the rule
with assumptions ` a = b and ` b = c, and conclusion ` a = c, is denoted by

` a = b ` b = c

` a = c
.

To define a new type, we need to specify a set of rules that determine the behavior of the
type with respect to the rest of the type theory. This set of rules has a structure, where each
rule must have a clear predefined goal. Here, the definition of the type of functions is used
as an illustration. Let A and B be two types. Then, we define the type of functions A→ B
with the following rules:

• Formation rule: Give the conditions required to form a type.

` A type ` B type
` A→ B type

→ form.

• Introduction rule: Define the canonical elements of a type.

x : A ` b(x) : B

` x 7→ b(x) : A→ B
→ intro.

• Elimination rule: Explains how to use a term in a derivation.

` f : A→ B ` a : A

` f(a) : B
→ elim.

• Computation rule: Ensures compatibility between the introduction and elimination
rules.

x : A ` b(x) : B, ` a : A

` (x 7→ b(x))(a) = b(a)
→ comp.

Sometimes, a type can be defined as the “free” construction from a set of generators, with
the generators being elements or functions with codomain the defined type. In this case, the
set of rules defining the type can be inferred from the generators in a deterministic procedure.
This kind of types are usually called inductive types. Let A and B be two types. Many of
the most common types are in fact inductive types:

• The sum type A + B is generated by the inclusion functions inl : A → A + B and
inr : B → A+B.

• The product type A×B is generated by all pairs ( · , · ) : A→ (B → A×B).

• The empty type ∅ is the type freely generated without generators.

• The unit type 1 is generated by one element ∗ : 1.

• The type of natural numbers N is generated by 0 : N and a function succ : N→ N.
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Let B be a family indexed by A. We can generalize products and functions into the
dependent product

∏
x:AB(x), which has the same definition as the function type A→ B but

with the codomain type varying for each x ∈ A. The same can be done with sums, obtaining
the dependent sum

∑
x:AB(x), which is the type freely generated by the dependent function

( · , · ) :
∏
x:A(B(x)→ A×B(x)).

Until now, we have seen how to construct types as “set-like” collections defined by rules.
But in fact, type theory offers also a way to use types as logical propositions. When a type
is interpreted as a proposition, it is considered to be true if it is inhabited, i.e., if it can be
proven to have at least one term. This relation between type theory constructors and logical
operators can be seen in Table 4.1. For more information about this relation, see [Uni13,
Section 1.11].

Set theory Type theory

True 1
False ∅
Negation of A A→ ∅
A and B A×B
A or B A+B
A implies B A→ B
A if and only if B (A→ B)× (B → A)
∀ x ∈ A, B(x)

∏
x:AB(x)

∃ x ∈ A, B(x)
∑
x:AB(x)

Table 4.1: Propositions as types

The more remarkable dependent type in Martin-Löf type theory is the identity type,
denoted by IdA(a, b) or Id(a, b), which serves as a logical equality inside of type theory. This
type is also defined inductively, by a constructor refla : IdA(a, a) for every a : A. Observe that
we can consider identity types of identity types, and so on recursively, which creates a higher
dimensional structure for every type in the theory. An identity type of an identity type
over a type A will be called a 2-identity type over A. Following this procedure recursively
defines n-identity types. Later in this chapter we will need to use the elimination and
computation rules for identity types, which are usually called path induction. Then, following
the procedure of [Uni13, Chapter 4], we can extract the elimination and computation rules
from the generators:

x : A, y : A, q : IdA(x, y) ` D(x, y, q) type
` p : IdA(a, b) x : A ` d(x) : D(x, x, reflx)

` JA,D(d, a, b, p) : D(a, b, p)
Id elim.

x : A, y : A, q : IdA(x, y) ` D(x, y, q) type
` a : A x : A ` d(x) : D(x, x, reflx)

` JA,D(d, a, a, refla) = d(a)
Id comp.

Using the identities, we can define a notion of equivalence between types. This notion of
equivalence is similar to the definition of a homotopy equivalence, if we think of identities
between functions as homotopies. We say that a function f : A→ B is an equivalence if the
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following type is inhabited:

IsEquiv(f) :=

 ∑
g:A→B

Id(g ◦ f, reflA)

×( ∑
h:A→B

Id(f ◦ h, reflB)

)
.

In fact, this property allows us to define the type of all equivalences between A and B

A ' B :=
∑

f :A→B

IsEquiv(f).

Finally, homotopy type theory (HoTT) is defined as a Martin-Löf type theory with all the
types previously introduced, which in addition has the univalence axiom and higher inductive
types. The univalence axiom says that there is an equivalence between Id(A,B) and A ' B.
This axiom is not very relevant for our further discussion; for more details see [Uni13]. On
the other hand, higher inductive types extend the idea of inductive types, allowing us to
use elements or functions on the identity types as generators. Thus, higher inductive types
provide a mechanism for easily defining types with a higher structure.

In particular, we are interested in the type-theoretic versions of well-known topological
spaces. The type-theoretic circle can be defined as the higher inductive type S1 generated as
follows:

• A term base : S1.

• A non-trivial identity loop : IdS1(base, base).

Then, it can be understood as a type freely generated by a point and a non-trivial “loop”
around that point. As in the case of inductive types, we could follow a deterministic procedure
to extract all the rules governing the type S1. Similarly, the type-theoretic torus T2 is a
higher inductive type with the following generators:

• A term b : T2.

• Two different non-trivial identities named p : IdT2(b, b) and q : IdT2(b, b).

• A non-trivial 2-identity t : IdIdT2 (b,b)(p · q, q · p).

Inspired by the previous construction of the torus, the author in [Mar20] proposed defining
the type-theoretic Klein bottle K as the higher inductive type with the following generators:

• A term b : K.

• Two different non-trivial identities named p : IdK(b, b) and q : IdK(b, b).

• A non-trivial 2-identity t : IdIdK(b,b)(p · q, q · p91).

Finally, following the proposal of Ripoll [Rip20], we define the type-theoretic real projective
plane RP2 as the higher inductive type with the following generators:

• A term b : RP2.

• A non-trivial identity p : IdRP2(b, b).

• A non-trivial 2-identity t : IdIdRP2 (b,b)(p, p91).

The intuition behind the generators of these higher inductive types is to replicate the
structure of the corresponding topological spaces as CW-complexes, with the structure of
generators displayed visually in Figure 4.1.
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(a) S1 (b) T2 (c) K
(d) RP2

Figure 4.1: Diagrams of the generators of S1, T2, K and RP2.

Using the tools of homotopy type theory, several useful properties about these higher
inductive types have been proven. Before considering the properties, we need to introduce
two more types. Using higher inductive types, it is easy to define type-theoretic set quo-
tients [Uni13, Section 6.10]. Then, we can define the type-theoretic integers Z as the usual
quotient of N×N [Uni13, Remark 6.10.7]. Let A be a type and a : A be a term of A. Define
the pointed type (A, a) as a term of the dependent product

∏
A: typeA. Then, define the loop

type of (A, a) as the type
Ω(A, a) := (IdA(a, a), refla).

One of the first homotopical results shown in homotopy type theory was that the loop
type of the circle is actually related to the integers, as in the case of the topological circle:

Theorem 4.1.1. [Uni13, Corollary 8.1.10]. There is an equivalence Ω(S1, base) ' Z.

The more complex relation between generators of the torus makes it difficult to obtain a
result like the previous one directly. In 2016, Sojakova published an equivalence between the
torus and the product of two circles. This equivalence enables us to easily transport results
like the previous one from the circle to the torus:

Theorem 4.1.2. [Soj16]. There is an equivalence T2 ' S1 × S1.

Corollary 4.1.3. The type-theoretic loop type of the torus is

Ω(T2, b) ' Z× Z.

Proof. Using Theorem 4.1.2, we know that an identity between elements of T2 can be
identified with one of S1 × S1. By [Uni13, Theorem 2.7.2], the identities between products
are equivalent to products of identities. Then, the loop type must be equivalent to the
product of the loop types of S1. Finally, by Theorem 4.1.1, this product must be equivalent
to Z× Z.

The case of the type-theoretic Klein bottle and the projective plane are even more
complicated, and there is very little literature about them. In 2018, Hou and Harper [HH18]
presented a formalization of covering spaces in homotopy type theory. Using this formalization,
the author defined an alternative type-theoretic Klein bottle K′ in [Mar20] as a type twofold
covered by T2. In addition, the author proved that K′ must be a 1-type, and conjectured
that K′ is equivalent to K. If this conjecture could be proved, it would follow that K is
indeed a 1-type, and that Ω(T2, b) is a double cover of Ω(K, b). This last property implies
that Ω(K, b) must be a group extension of index 2 of Z× Z, by Corollary 4.1.3. Therefore,
if proven, the conjecture that K′ ' K would give a useful description of the homotopical
structure of the higher inductive type K.
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The n-th real projective space was defined in type theory by means of homotopy pushouts
by Buchholtz and Rijke [BR17]. The formalization of homotopy pushouts in homotopy type
theory can be found in [Uni13]. In [Rip20], the definition of the projective plane as a higher
inductive type RP2 is conjectured to be equivalent to the definition of Buchholtz and Rijke.
In addition, Ripoll presents strong evidence of this equivalence by describing the functions
that could set up the equivalence.

4.2 Relation between types and ∞-groupoids

One of the main properties of Martin-Löf type theory is that it can be seen as a “syntax”
for a certain class of categories. Those categories give the semantics to the theories developed
inside type theory. We will call an interpretation any assignment of a category to a type
theory, in such a way that all the rules and constructions are respected.

In the original works of Martin-Löf [Mar84], the identity types had different elimination
rules, which “collapsed” the higher structure of identity types. Those kinds of type theories
usually had semantics on the category of sets. Using the identity type presented in the
previous section, Hofmann and Streicher [HS98] provided in 1998 the first interpretation with
homotopical constructions based on the category of groupoids. The first full homotopical
interpretation was due to Awodey and Warren [AW09], based on a particular kind of model
categories. Later, van den Berg and Garner [BG12] made interpretations taking into account
the coherence between the higher operations of an ∞-groupoid.

First, we need to review the interpretation of [AW09], which is the base of many of
its successors. Let C be a cartesian closed model category. As we said before, we need
to associate a categorical construction to each kind of judgement. Any judgement of type
definition without context can be interpreted as a fibrant object of C. A term declaration
` a : A is interpreted as a global section to the fibrant object assigned to the judgement
` A type. On the other hand, the equality judgements are interpreted as the identities of
C. Any dependent judgement is interpreted as a composition of fibrations, with as many
fibrations as term declarations in the context.

The next step is constructing the basic types as defined in the previous section. The
interpretation for each type must preserve the rules as properties in the category C. For
example, it can be proven that the sum type corresponds to the coproduct of C, the product
type to the product from C, the unit type to the terminal object and the empty type to
the initial one. Because C is a cartesian closed category, we can assign the function type to
the exponential. The case of the dependent product and dependent sum is more complex.
These constructions can be interpreted as a right adjoint and a left adjoint respectively to
the pullback functor of the fibration of the dependent family. By arguments explained in
detail in [AW09], the interpretation of the dependent sum always exists, but to ensure all
the rules from the dependent product we need C to be locally cartesian closed. Finally, the
identity type is interpreted as the path object. This interpretation has been summed up
in Table 4.2, except for dependent sum and dependent product.

For example, in [AW09] it is shown that the category of simplicial sets has all the
requirements mentioned earlier. By similar methods, in [BG12] it is shown that topological
spaces also meet those requirements, but only if we take the Moore path space as path object.
Then, we know that there is a simplicial set or a topological space related to each type.

Unfortunately, this interpretation method does not always give us clear information
about which topological space is related to a given type. As mentioned earlier, the identity
types endow a type with a higher structure. In fact, this structure resembles the structure
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Category theory Type theory

Fibrant object A Type declaration A type
Fibration B → A Dependent family x : A ` B(x) type
Initial object 0 Empty type ∅
Terminal object 1 Unit type 1

Global section 1→ A Term x : A

Product A×B Product A×B
Coproduct A tB Sum A+B

Exponential object AB Function A→ B

Path object Path(A)→ A×A Identity type a, b : A ` IdA(a, b)

Table 4.2: Interpretation of type theory in a model category

expected in an ∞-groupoid [Uni13]: there is a tower of n-identities, with a weakly associative
composition and a weak inverse. The presence of the tower of identity types follows directly
from the definition. The following propositions imply the existence of composition, inverse
and the expected properties:

Proposition 4.2.1. Let A be a type and x, y : A. Then, there exists a path inverse function

IdA(x, y) → IdA(y, x)
p 7→ p91

such that reflx91 = reflx for all x : A.

Proof. For all x, y : A and p : IdA(x, y) we want to define p91 : IdA(y, x). By path induction,
it is enough to consider the case of x = y and p = reflx. In this case, we want to define
reflx

91 : IdA(x, x), and then we can simply take reflx
91 := reflx.

Proposition 4.2.2. Let A be a type and x, y, z : A. Then, there exists a composition function

IdA(x, y)× IdA(y, z) → IdA(x, z)
(p, q) 7→ p · q

such that reflx · reflx = reflx for all x : A.

Proof. By the elimination rule of the product, presented in [Uni13, p. 38], any element
IdA(x, y)× IdA(y, z)→ IdA(x, z) can be defined as a function

IdA(x, y)→ (IdA(y, z)→ IdA(x, z)).

To define this function, we need to apply path induction twice: one for the first parameter,
and another for the second one. This double path induction is equivalent to assuming
x = y = z and p = q = reflx. Then, we can define reflx · reflx := reflx : IdA(x, x).

Proposition 4.2.3. Let A be a type, a, b, c, d : A, p : IdA(a, b), q : IdA(b, c) and r : IdA(c, d).
Then the following types are inhabited:

(i) Id(p, p · reflb) and Id(p, refla · p).

(ii) Id(p91 · p, reflb) and Id(p · p91, refla).
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(iii) Id((p91)
91
, p).

(iv) Id(p · (q · r), (p · q) · r).

Proof. By Proposition 4.2.1 and Proposition 4.2.2, we know that there are two judgmental
equalities (a) reflx

91 = reflx and (b) refla = refla · refla.

(i) By path induction on p, it is enough to prove that there is an inhabitant in the case
where a = b and p = refla. Then, the equality (a) implies that there is a canonical
element

reflId(refla,refla) : Id(refla, refla) = Id(refla, refla · refla).

The same argument proves the existence of a term Id(p, refla · p).

(ii) By path induction on p, consider a = b and p = refla. Then, the following chain of
equalities follows from the equations (a) and (b), and proves the existence of a canonical
term refla

91 · refla = refla · refla = refla.

(iii) As in the previous cases, use path induction on p with a = b and p = refla. Then, using
the equation (a), a canonical term exists because (refla

91)
91

= refla
91 = refla.

(iv) Use path induction on p, q and r. Then, using the equation (b), a canonical term exists
because

refla · (refla · refla) = refla · refla = (refla · refla) · refla.

The study of the structure generated by the tower of identity types led to a different
family of models of homotopy type theory. The original suggestion of Grothendieck [Gro83]
for a model of ∞-groupoids was to use globular sets. A globular set is a diagram of sets and
functions

X0 X1 X2 · · ·
s0

t0 t1

s1 s2

t2

satisfying the globular identities

sn ◦ sn+1 = sn ◦ tn+1,

tn ◦ sn+1 = tn ◦ tn+1.

The category of globular sets is denoted by gSet. Furthermore, define a globular object
on a category C as a diagram with the shape of a globular set but with objects and
morphisms of C satisfying the globular identities. To define the model of ∞-groupoids as
globular sets we need to add some structure over globular sets, following the construction of
Batanin [Bat98]. A strict ∞-category is defined as a globular set C. Each set Cn represents
the set of n-morphisms and the source and target correspond to the domain and codomain
(n − 1)-morphisms. Additionally, we need to ask for the existence of a composition of
n-morphisms along a common boundary in any lower dimension, satisfying associativity, unit
and interchange laws; see [Ber02] for details.

Thus, every strict ∞-category has an underlying globular set, which defines a forgetful
functor U and a monadic adjunction with a free functor F between the category of globular
sets and the one from strict ∞-categories. This monadic adjunction yields a free strict ∞-
category monad (T, µ, η) on gSet. In particular, T1 (where 1 denotes the terminal globular
set, with just one element of each dimension) consists informally of free “pasting” elements of
1, including degenerate pastings from the identity elements of F1.
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A globular operad is a monad P on gSet equipped with a cartesian monad morphism
ρ : P ⇒ T . Additionally, a P -algebra is a globular set A together with an action of P on A,
i.e., a composition map c : TA×T1 P → A satisfying some technical conditions. One needs
to ask two additional properties on globular operads. First, a globular operad is normalized
if there is a natural bijection (PX)0

∼= X0. Second, a globular operad is contractible if it is a
“deformation” of the monad T . This fact is expressed by some technical conditions found
in [Ber02].

Following the ideas of Grothendieck, several authors presented models of ∞-categories
and ∞-groupoids based on globular sets. The definition presented here follows the work of
Batanin [Bat98], and the survey done by Berger [Ber02]. A Batanin ∞-category (P,X) is an
algebra X for a contractible normalized globular operad P . For any Batanin ∞-category
(P,X), an equivalence x ' y between two n-morphisms is given by two (n+ 1)-morphisms
f : x → g and g : y → x such that there exist equivalences g ◦ f ' Idx and f ◦ g ' Idy.
Then, an (n + 1)-morphism f : x → y is weakly invertible if it is part of an equivalence
x ' y. Finally, a Batanin ∞-groupoid is a Batanin ∞-category with every element of any
dimension being weakly invertible with respect to every system of compositions on P . The
homotopy hypothesis for this particular model is proven in the work of Batanin [Bat98],
using and adjunction between topological spaces and the category of Batanin ∞-groupoids
which induces an equivalence at the homotopy categories.

Observe that the tower of identity types in homotopy type theory has an inherent globular
structure. The edges of an identity define the source and target maps, and the globular
identities follow directly. On the other hand, the weak composition and weak unit coincide
with the ones found in the monadic structure of the normalized contractible globular operads.
Finally, the weak inverses from type theory have the same definition as the ones from a
Batanin ∞-category, and they exist for every element of an identity, as in the case of a
Batanin ∞-groupoid.

The first appearance of this idea was in the thesis of Warren [War08]. Later, it was
further developed in the independent works of van der Berg and Garner [BG10], and
Lumsdaine [Lum09]. In [BG10], the authors build a category from the type theory, by
similar methods to the interpretations presented earlier, and then show that types in that
category are algebras over a normalized contractible globular operad with weakly invertible
morphisms.

4.3 Modeling types as Moore path categories

In this section we want to assess whether the model of the fundamental ∞-groupoid as a
Moore path category can help to interpret results from type theory. Our first try was to make
an interpretation directly onto the category of∞-groupoids as topological categories, following
the methods of [AW09]. But this approach cannot succeed because the corresponding model
of ∞-Grpd fails to be cartesian closed and locally cartesian closed [Rie19].

In the rest of this work, we will use the interpretation of type theory presented in [BG12].
This article presents a mix of the two previous methods: it interprets type theory in several
model categories, but at the same time it chooses path objects in a way that they present the
structure of a normalized contractible globular operad with weakly invertible morphisms. In
particular, we are interested in the example of interpreting onto the category of topological
spaces, choosing as path objects the Moore path spaces.

For any type A, we denote by X (A) the topological space which interprets A following the
work of [BG12]. For each term a : A, we know that there is an element of X (A) which will
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be denoted ā ∈ X (A). Then, for each x, y : A, the identity type IdA(x, y) will be interpreted
as X (IdA(x, y)) = PMx̄,ȳX (A).

Then, we can use Moore path categories as a tool to realize the globular structure of the
tower of identities. Each term of a type A has an associated element of X (A), which itself
corresponds to an object of ΠM

∞(X (A)). Additionally, for every two terms x, y : A, there is a
homset which must be equal to

ΠM
∞(X (A))(x̄, ȳ) = PMx̄,ȳX (A) = X (IdA(x, y)).

The composition and weak inverses from ΠM
∞(X (A)) realize the ones found in type theory.

The 2-identities will be modelled as morphisms of ΠM
∞(X (IdA(x, y))) = ΠM

∞(PMx̄,ȳX (A)) for
every x, y : A, and so on recursively. In this case the associativity of the Moore path category
is stricter than the one in type theory, but this also happens in other interpretations like the
model in strict ∞-groupoids of [War08]. In fact, this identification also realizes the globular
structure of the identity types, as shown in [BG12, Proposition 5.1.1].

Level ∞-groupoids Types

0 ΠM
∞(X (A)) A

1
∐

x̄,ȳ∈X (A)

ΠM
∞(PMx̄,ȳX (A))

∑
x,y:A

Id(x, y)

2
∐

x̄,ȳ∈X (A)

∐
p̄1,q̄1∈PM

x̄,ȳX (A)

ΠM
∞(PMp̄1,q̄1(PMx̄,ȳX (A)))

∑
x,y:A

∑
p1,q1:Id(x,y)

Id(p1, q1)

...
...

...

Table 4.3: Identification of the globular structure of Moore path categories and types

As an example, we will use Moore path categories to ensure that the topological space
related to some higher inductive types is the expected one. Our targets will be the circle
and the torus defined as higher inductive types. In type theory, Z is a set, which implies
that it does not have any non-trivial higher identities. Then, the ∞-groupoid of ΠM

∞(X (Z))
must have as objects the set Z and trivial homsets. Therefore, X (Z) must be equivalent to
Z, because the two realize the same fundamental ∞-groupoid.

Proposition 4.3.1. The topological spaces X (S1) and S1 have the same homotopy type.

Proof. By Theorem 2.4.8, we know that ΠM
∞(S1) is homotopy equivalent to the fundamental

∞-groupoid of S1. Because S1 is path connected, we can choose any basepoint x ∈ S1, and
we have a homotopy equivalence ΠM

∞(S1) ' D(ΩMx S1). Then, ΠM
∞(S1) is homotopy equivalent

to an ∞-groupoid with one object x and the homset ΩM
x S1. On the other hand, we know

that the circle has ΩxS1 ' Z. By Proposition 2.4.2, we also have ΩM
x S1 ' ΩxS1 ' Z. The

existence of this weak equivalence implies that the fundamental ∞-groupoid of S1 is weakly
homotopy equivalent to an ∞-groupoid with one object and Z as homset.

Because of Theorem 4.1.1, the identity structure over S1 must have the only identity type
equivalent to Z, and all higher identities being trivial. Then, we know that the topological
space X (S1) associated to the circle S1 has to have ΠM

∞(X (S1)) weakly equivalent to one
with only one object x and the only non-trivial homset Z. But this coincides with the
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fundamental ∞-groupoid of the circle found earlier. Therefore, X (S1) must be homotopy
equivalent to the topological circle S1.

Proposition 4.3.2. The topological spaces X (T2) and T2 have the same homotopy type.

Proof. The fundamental ∞-groupoid of T2 is homotopy equivalent to an ∞-groupoid with
one object x and the homset ΩM

x T2. Furthermore, the torus is the classifying space of
Z× Z. Hence, Z× Z ' Ωx B(Z× Z) ∼= ΩxT2 ' ΩMx T2 for any base point x ∈ T2. Thus, the
fundamental ∞-groupoid of T2 is weakly homotopy equivalent to an ∞-groupoid with one
object and Z × Z as homset. Thanks to Corollary 4.1.3, the same argument used in the
previous proposition proves that the torus T2 has the same homotopy type as X (T2).

To reproduce the same procedure for the Klein bottle, first we would need to prove the
conjecture that the type-theoretical torus is a double cover of the type-theoretical Klein
bottle, which would imply that the latter is a 1-type. Furthermore, in the case of 1-types
defined as higher inductive types, there is work by Veltri and van der Weide [VW20] providing
a much more general interpretation.

As we stated in the Introduction, we are interested in a way to define syntactically a
type-theoretical version of a finite CW-complex space as a higher inductive type. In addition,
we want that the interpretation of that higher inductive type on any category of∞-groupoids
has the same homotopy type as the fundamental ∞-groupoid of the original space. Although
we have used Moore path categories as intended for simple examples like the circle or the
torus, further research is needed for studying other cases like the real projective spaces with
other techniques.
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