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Categories

Functors and natural
transformations

Cones and limits
∠ Diagram D : I → C

∠ Cone α : ∆c ⇒ D
∠ α is a limit if for all d ∈ C

Hom(d , c) ∼= Cones(D, d)
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Presentability

A category has two types of collections: the objects, and the
morphisms. Then, a category is:

� Small if it has a set of objects and sets of morphisms.

� Locally small if it has a (maybe large) collection of objects
and sets of morphisms.

� Large if it has (maybe large) collections of objects and
morphisms.

A (locally) presentable category is a locally small category which
contains a set S of small objects such that every object is a nice
colimit over S.

Examples. Set, Grp, sSet, . . . Non example. Top
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Limit sketches

A limit sketch (Bastiani and Ehresmann 1972) is a pair (A, C) of a
small category A and a set of cones C over A.

A model of a limit sketch is a functor F : A → Set which sends
cones of C to limits of Set. A category is limit-sketchable if it is
equivalent to the category of models of some limit sketch.

Example. Let A be the small category generated by the square (a).

Let c be the cone
with apex and diagram

Then (A, {c}) is a sketch �

A F−−−−−−−−−−−→ Set

0 1

2 3
(a)

7−→
A C

B D

⌟

A model F of the sketch (A, {c}) is a pullback of sets �
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Representation theorem

Theorem (Adamek and Rosicky 1994)
The following are equivalent:
(i) Presentable categories.
(ii) Limit-sketchable categories.

Goal
Presentable ∞-categories ?≃ Limit-sketchable ∞-categories
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Limit ∞-sketches

Representation theorem
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Informal higher categories

A higher category has objects and:
✓ n-morphisms between (n − 1)-morphisms for all n ≥ 1,

✓ Composition, identities and associativity of n-morphisms weakly
up to a (n + 1)-morphism for all n ≥ 1.

A higher category is an (∞, m)-category
if for any n > m, the n-morphisms are
invertible up to a (n + 1)-morphism.

∠ ∞-category := (∞, 1)-category

∠ ∞-groupoid := (∞, 0)-category
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Limits and colimits

Let C be an ∞-category, and I be a small ∞-category. Given any
object x ∈ Obj(C), the constant diagram ∆x : I → C sends all
objects of I to x , and all higher morphisms to higher identities.

Let D : I → C be a diagram and y ∈ Obj(C) be an object of C. A
natural transformation α : ∆y ⇒ D exhibits y as a limit of D if,
for all x ∈ Obj(C), α induces an equivalence

MapC(x , y) ∼−→ Cones(D, x) := MapFun(I,C)(∆x , D).

Cocones and colimit cocones are defined as cones and limit cones
in the opposite ∞-category.
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Accessibility

Let κ denote a regular cardinal and C an ∞-category.
∠ An ∞-category K is κ-filtered if, for every κ-small ∞-category

I, every diagram D : I → K admits a cocone α : D ⇒ ∆x .

∠ C admits κ-filtered colimits if it admits K-indexed colimits,
for every κ-filtered ∞-category K.

∠ An object x ∈ Obj(C) is called κ-compact if the mapping
space functor MapC(x , −) : C → S preserves κ-filtered colimits.

An ∞-category C is accessible if it is locally small and there is a
regular cardinal κ such that:

✓ C admits κ-filtered colimits.

✓ There is some essentially small sub-∞-category of κ-compact
objects which generates C under κ-filtered colimits.
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Presentability

Definition
An ∞-category is presentable if it is accessible and cocomplete.

Example
(a) The ∞-category of homotopy types S is presentable.
(b) Any ∞-topos is presentable.
(c) The nerve of any presentable 1-category is presentable.
(d) If A is a small ∞-category and C is a presentable ∞-category,

then Fun(A, C) is presentable.
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Limit ∞-sketches

A limit ∞-sketch (Joyal 2008) T = (K,L) is a small ∞-category
K equip with a set L of cones.

Let C be a complete ∞-category. A functor F : K → C is a model
of a limit ∞-sketch T = (K,L) in C if it sends each cone in L to a
limit cone in C.

Mod(T , C) := ∞-category of models of T in C
Mod(T ) := ∞-category of models of T in S

We say that an ∞-category is limit ∞-sketchable (or essentially
∞-algebraic) if it is equivalent to the ∞-category of models of
some limit ∞-sketch.
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Examples: ∞-algebraic theories

An ∞-algebraic theory (or ∞-Lawvere theory) is a small
∞-category with finite products. A model (or algebra) for an
∞-algebraic theory A is a functor A → S that preserves products.

Any ∞-algebraic theory is an ∞-sketch with only product cones

Example. Monoid objects (A∞-spaces), commutative monoid
objects (E∞-spaces), group objects (∞-groups), R-modules, . . .

Theorem (Rosicky 2007 and Lurie 2009)
The ∞-category of models of an ∞-algebraic theory is presentable.
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Examples: Internal precategories
Let C be a complete ∞-category, A be the nerve of ∆op, and cn be
the cone with apex and diagram for all n ∈ N:

[n]

[0] [0] [0]

[1] [1] [1] [1] [1]

(n)
···

Then T = (A, {cn | n ∈ N}) is a limit ∞-sketch, and a model
F : A → C is a simplicial object in C such that

Fn
∼−→ F1 ×F0 F1 ×F0 · · · ×F0 F1. (Segal condition)

Mod(T , C) ≃ Internal precategories
Mod(T ) ≃ Segal spaces
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Examples: Internal univalent categories

Let A be as before, LS be the set of cones of the previous sketch,
and d be the cone with apex and diagram :

[0]

[1] [3]

[1] [1] [1]

[0] [0]

Then T = (A,LS ∪ {d}) is a limit
∞-sketch, and a model F : A → C is
an internal precategory in C such that

F0 F3

F1 F1 ×d1,d1
F0

F1 ×d0,d0
F0

F1

⌟

Mod(T , C) ≃ Internal univalent categories
Mod(T ) ≃ Complete Segal spaces
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Representation theorem

Theorem (M.)
An ∞-category is presentable ⇐⇒ it is limit ∞-sketchable.

Corollary
The ∞-category of models of a limit ∞-sketch in a presentable
∞-category is presentable.

15 / 19



Future work

� Generalization: A ∞-category is accessible if, and only if, it is
equivalent to the ∞-category of models of an ∞-sketch.
A sketch is a limit sketch with a set of cocones which are sent
to colimit cocones by any model.

� Accessibility, presentability, sketches, and representation
theorem for ∞-cosmoi (Riehl and Verity 2022)
=⇒ Model-independent version of this presentation!

� Formalize this work with a proof assistant which supports
synthetic ∞-categories like rzk.
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� Adamek, Jǐŕı and Jǐŕı Rosicky (1994). Locally Presentable and Accessible
Categories. Vol. 189. Cambridge University Press.
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