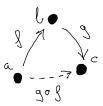
#### LIMIT SKETCHES AND PRESENTABILITY

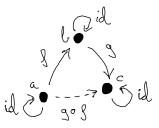
David Martínez Carpena

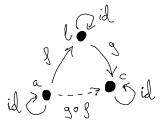
Carles Casacuberta Javier J. Gutiérrez



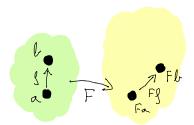


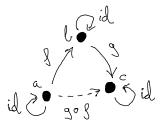




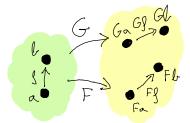


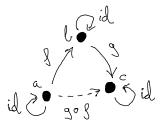
# Functors and natural transformations



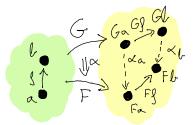


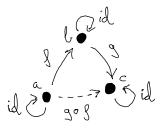
# Functors and natural transformations

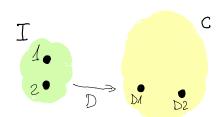




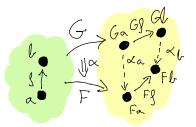
# Functors and natural transformations





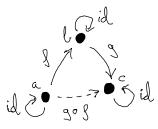


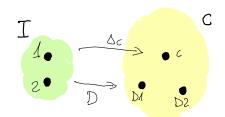
# Functors and natural transformations



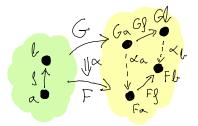
#### Cones and limits

→ Diagram  $D: I \rightarrow C$ 



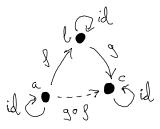


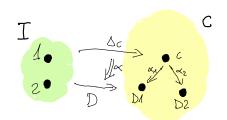
# Functors and natural transformations



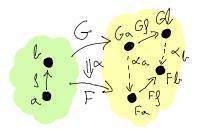
#### Cones and limits

→ Diagram  $D: I \rightarrow C$ 





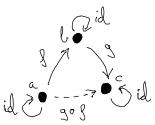
# Functors and natural transformations

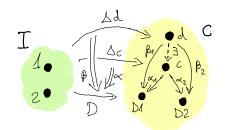


#### Cones and limits

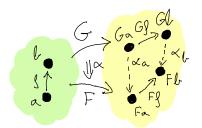
> Diagram D: I → C

**>** Cone  $\alpha : \Delta c \Rightarrow D$ 





# Functors and natural transformations



#### Cones and limits

- > Diagram  $D: I \rightarrow C$
- **>** Cone  $\alpha : \Delta c \Rightarrow D$
- $\rightarrow \alpha$  is a limit if for all  $d \in C$

 $\mathsf{Hom}(d,c) \cong \mathsf{Cones}(D,d)$ 

A category has two types of collections: the objects, and the morphisms. Then, a category is:

A category has two types of collections: the objects, and the morphisms. Then, a category is:

**Small** if it has a set of objects and sets of morphisms.

A category has two types of collections: the objects, and the morphisms. Then, a category is:

- **Small** if it has a set of objects and sets of morphisms.
- **Locally small** if it has a (maybe large) collection of objects and sets of morphisms.

A category has two types of collections: the objects, and the morphisms. Then, a category is:

- **Small** if it has a set of objects and sets of morphisms.
- Locally small if it has a (maybe large) collection of objects and sets of morphisms.
- Large if it has (maybe large) collections of objects and morphisms.

A category has two types of collections: the objects, and the morphisms. Then, a category is:

- **Small** if it has a set of objects and sets of morphisms.
- Locally small if it has a (maybe large) collection of objects and sets of morphisms.
- Large if it has (maybe large) collections of objects and morphisms.

A **(locally) presentable** category is a locally small category which contains a set S of *small objects* such that every object is a *nice* colimit over S.

A category has two types of collections: the objects, and the morphisms. Then, a category is:

- **Small** if it has a set of objects and sets of morphisms.
- Locally small if it has a (maybe large) collection of objects and sets of morphisms.
- Large if it has (maybe large) collections of objects and morphisms.

A **(locally) presentable** category is a locally small category which contains a set S of *small objects* such that every object is a *nice* colimit over S.

**Examples.** Set, Grp, sSet, ... **Non example.** Top

A **limit sketch** (Bastiani and Ehresmann 1972) is a pair (A, C) of a small category A and a set of cones C over A.

**Example.** Let A be the small category generated by the square (a).

$$\begin{array}{ccc} 0 & \longrightarrow & 1 \\ \downarrow & \text{(a)} & \downarrow \\ 2 & \longrightarrow & 3 \end{array}$$

A **limit sketch** (Bastiani and Ehresmann 1972) is a pair (A, C) of a small category A and a set of cones C over A.

**Example.** Let A be the small category generated by the square (a).

Let c be the cone with apex and diagram  $0 \longrightarrow 1$ Then  $(A, \{c\})$  is a sketch c  $2 \longrightarrow 3$ 

A **limit sketch** (Bastiani and Ehresmann 1972) is a pair (A, C) of a small category A and a set of cones C over A.

A **model** of a limit sketch is a functor  $F: A \rightarrow \mathbf{Set}$  which sends cones of C to limits of  $\mathbf{Set}$ . A category is **limit-sketchable** if it is equivalent to the category of models of some limit sketch.

**Example.** Let A be the small category generated by the square (a).

Let c be the cone with apex and diagram  $0 \longrightarrow 1$ Then  $(A, \{c\})$  is a sketch c  $2 \longrightarrow 3$ 

A **limit sketch** (Bastiani and Ehresmann 1972) is a pair (A, C) of a small category A and a set of cones C over A.

A **model** of a limit sketch is a functor  $F: A \to \mathbf{Set}$  which sends cones of C to limits of  $\mathbf{Set}$ . A category is **limit-sketchable** if it is equivalent to the category of models of some limit sketch.

**Example.** Let A be the small category generated by the square (a).

Let 
$$c$$
 be the cone  $A \xrightarrow{\mathsf{F}} \mathsf{Set}$  with apex and diagram  $0 \xrightarrow{} \mathsf{1} \qquad A \xrightarrow{} \mathsf{C}$  Then  $(A, \{c\})$  is a sketch  $C$   $2 \xrightarrow{} 3 \qquad B \xrightarrow{} D$ 

A model **F** of the sketch  $(A, \{c\})$  is a pullback of sets  $\mathcal{O}$ 

## Representation theorem

#### Theorem (Adamek and Rosicky 1994)

The following are equivalent:

- (i) Presentable categories.
- (ii) Limit-sketchable categories.

### Representation theorem

### Theorem (Adamek and Rosicky 1994)

The following are equivalent:

- (i) Presentable categories.
- (ii) Limit-sketchable categories.

#### Goal

Presentable  $\infty$ -categories  $\stackrel{?}{\simeq}$  Limit-sketchable  $\infty$ -categories

#### Plan

Presentable  $\infty$ -categories

Limit ∞-sketches

Representation theorem

#### Plan

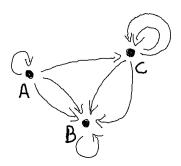
Presentable  $\infty$ -categories

Limit ∞-sketches

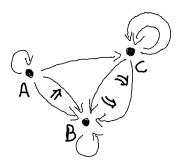
Representation theorem

- $\checkmark$  n-morphisms between (n-1)-morphisms for all  $n \ge 1$ ,
- $lue{oldsymbol{arepsilon}}$  Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .

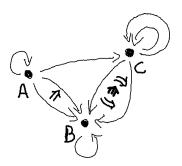
- lacksquare n-morphisms between (n-1)-morphisms for all  $n\geq 1$ ,
- lacksquare Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .



- $\ensuremath{\checkmark}$  n-morphisms between (n-1)-morphisms for all  $n\geq 1$ ,
- $lue{oldsymbol{arphi}}$  Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .

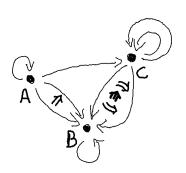


- $\ensuremath{\checkmark}$  n-morphisms between (n-1)-morphisms for all  $n\geq 1$ ,
- lacksquare Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .



#### A higher category has objects and:

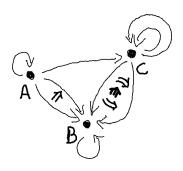
- $\ensuremath{\checkmark}$  n-morphisms between (n-1)-morphisms for all  $n\geq 1$ ,
- lacksquare Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .



A higher category is an  $(\infty, m)$ -category if for any n > m, the n-morphisms are invertible up to a (n + 1)-morphism.

#### A **higher category** has objects and:

- $\ensuremath{ \checkmark}$  n-morphisms between (n-1)-morphisms for all  $n\geq 1$ ,
- lacksquare Composition, identities and associativity of n-morphisms weakly up to a (n+1)-morphism for all  $n\geq 1$ .



A higher category is an  $(\infty, m)$ -category if for any n > m, the n-morphisms are invertible up to a (n + 1)-morphism.

- $ightarrow \infty$ -category  $\coloneqq (\infty, 1)$ -category
- >  $\infty$ -groupoid :=  $(\infty, 0)$ -category

Let  $\mathcal C$  be an  $\infty$ -category, and I be a small  $\infty$ -category. Given any object  $x \in \mathsf{Obj}(\mathcal C)$ , the **constant diagram**  $\Delta x : I \to \mathcal C$  sends all objects of I to x, and all higher morphisms to higher identities.

Let  $\mathcal C$  be an  $\infty$ -category, and I be a small  $\infty$ -category. Given any object  $x \in \mathsf{Obj}(\mathcal C)$ , the **constant diagram**  $\Delta x : I \to \mathcal C$  sends all objects of I to x, and all higher morphisms to higher identities.

Let  $D:I\to\mathcal{C}$  be a diagram and  $y\in \mathrm{Obj}(\mathcal{C})$  be an object of  $\mathcal{C}$ . A natural transformation  $\alpha:\Delta y\Rightarrow D$  exhibits y as a limit of D if, for all  $x\in \mathrm{Obj}(\mathcal{C})$ ,  $\alpha$  induces an equivalence

$$\mathsf{Map}_{\mathcal{C}}(x,y) \stackrel{\sim}{\longrightarrow} \mathsf{Cones}(D,x)$$

Let  $\mathcal C$  be an  $\infty$ -category, and I be a small  $\infty$ -category. Given any object  $x \in \mathsf{Obj}(\mathcal C)$ , the **constant diagram**  $\Delta x : I \to \mathcal C$  sends all objects of I to x, and all higher morphisms to higher identities.

Let  $D:I\to\mathcal{C}$  be a diagram and  $y\in \mathrm{Obj}(\mathcal{C})$  be an object of  $\mathcal{C}$ . A natural transformation  $\alpha:\Delta y\Rightarrow D$  exhibits y as a limit of D if, for all  $x\in \mathrm{Obj}(\mathcal{C})$ ,  $\alpha$  induces an equivalence

$$\mathsf{Map}_{\mathcal{C}}(x,y) \stackrel{\sim}{\longrightarrow} \mathsf{Cones}(D,x) \coloneqq \mathsf{Map}_{\mathsf{Fun}(I,\mathcal{C})}(\Delta x,D).$$

Let  $\mathcal C$  be an  $\infty$ -category, and I be a small  $\infty$ -category. Given any object  $x \in \mathsf{Obj}(\mathcal C)$ , the **constant diagram**  $\Delta x : I \to \mathcal C$  sends all objects of I to x, and all higher morphisms to higher identities.

Let  $D:I\to\mathcal{C}$  be a diagram and  $y\in \mathrm{Obj}(\mathcal{C})$  be an object of  $\mathcal{C}$ . A natural transformation  $\alpha:\Delta y\Rightarrow D$  exhibits y as a limit of D if, for all  $x\in \mathrm{Obj}(\mathcal{C})$ ,  $\alpha$  induces an equivalence

$$\mathsf{Map}_{\mathcal{C}}(x,y) \stackrel{\sim}{\longrightarrow} \mathsf{Cones}(D,x) \coloneqq \mathsf{Map}_{\mathsf{Fun}(I,\mathcal{C})}(\Delta x,D).$$

Cocones and colimit cocones are defined as cones and limit cones in the opposite  $\infty$ -category.

### Accessibility

Let  $\kappa$  denote a regular cardinal and  $\mathcal C$  an  $\infty$ -category.

> An ∞-category  $\mathcal K$  is  $\kappa$ -**filtered** if, for every  $\kappa$ -small ∞-category I, every diagram  $D:I\to \mathcal K$  admits a cocone  $\alpha:D\Rightarrow \Delta x$ .

# Accessibility

Let  $\kappa$  denote a regular cardinal and  $\mathcal C$  an  $\infty$ -category.

- > An ∞-category K is  $\kappa$ -**filtered** if, for every  $\kappa$ -small ∞-category I, every diagram  $D: I \to K$  admits a cocone  $\alpha: D \Rightarrow \Delta x$ .
- >  $\mathcal C$  admits  $\kappa$ -filtered colimits if it admits  $\mathcal K$ -indexed colimits, for every  $\kappa$ -filtered  $\infty$ -category  $\mathcal K$ .

# Accessibility

Let  $\kappa$  denote a regular cardinal and  $\mathcal C$  an  $\infty$ -category.

- > An ∞-category K is  $\kappa$ -**filtered** if, for every  $\kappa$ -small ∞-category I, every diagram  $D: I \to K$  admits a cocone  $\alpha: D \Rightarrow \Delta x$ .
- >  $\mathcal C$  admits  $\kappa$ -filtered colimits if it admits  $\mathcal K$ -indexed colimits, for every  $\kappa$ -filtered  $\infty$ -category  $\mathcal K$ .
- > An object  $x \in \mathsf{Obj}(\mathcal{C})$  is called  $\kappa$ -compact if the mapping space functor  $\mathsf{Map}_{\mathcal{C}}(x,-): \mathcal{C} \to \mathcal{S}$  preserves  $\kappa$ -filtered colimits.

# Accessibility

Let  $\kappa$  denote a regular cardinal and  $\mathcal C$  an  $\infty$ -category.

- > An ∞-category  $\mathcal{K}$  is  $\kappa$ -**filtered** if, for every  $\kappa$ -small ∞-category I, every diagram  $D: I \to \mathcal{K}$  admits a cocone  $\alpha: D \Rightarrow \Delta x$ .
- >  $\mathcal C$  admits  $\kappa$ -filtered colimits if it admits  $\mathcal K$ -indexed colimits, for every  $\kappa$ -filtered  $\infty$ -category  $\mathcal K$ .
- > An object  $x \in \mathsf{Obj}(\mathcal{C})$  is called  $\kappa\text{-}\mathsf{compact}$  if the mapping space functor  $\mathsf{Map}_{\mathcal{C}}(x,-):\mathcal{C} \to \mathcal{S}$  preserves  $\kappa\text{-}\mathsf{filtered}$  colimits.

An  $\infty$ -category  $\mathcal C$  is **accessible** if it is locally small and there is a regular cardinal  $\kappa$  such that:

- $\ensuremath{\mathbf{V}}$  C admits  $\kappa$ -filtered colimits.
- Arr There is some essentially small sub- $\infty$ -category of  $\kappa$ -compact objects which generates  $\mathcal C$  under  $\kappa$ -filtered colimits.

# Presentability

#### Definition

An  $\infty$ -category is **presentable** if it is accessible and cocomplete.

# Presentability

#### Definition

An  $\infty$ -category is **presentable** if it is accessible and cocomplete.

#### Example

- (a) The  $\infty$ -category of homotopy types  $\mathcal S$  is presentable.
- (b) Any  $\infty$ -topos is presentable.
- (c) The nerve of any presentable 1-category is presentable.
- (d) If  $\mathcal A$  is a small  $\infty$ -category and  $\mathcal C$  is a presentable  $\infty$ -category, then  $\mathsf{Fun}(\mathcal A,\mathcal C)$  is presentable.

#### Plan

Presentable  $\infty$ -categories

Limit ∞-sketches

Representation theorem

#### Limit ∞-sketches

A **limit**  $\infty$ -sketch (Joyal 2008)  $\mathcal{T} = (\mathcal{K}, \mathfrak{L})$  is a small  $\infty$ -category  $\mathcal{K}$  equip with a set  $\mathfrak{L}$  of cones.

#### Limit ∞-sketches

A **limit**  $\infty$ -sketch (Joyal 2008)  $\mathcal{T} = (\mathcal{K}, \mathfrak{L})$  is a small  $\infty$ -category  $\mathcal{K}$  equip with a set  $\mathfrak{L}$  of cones.

Let  $\mathcal C$  be a complete  $\infty$ -category. A functor  $F:\mathcal K\to\mathcal C$  is a **model** of a limit  $\infty$ -sketch  $\mathcal T=(\mathcal K,\mathfrak L)$  in  $\mathcal C$  if it sends each cone in  $\mathfrak L$  to a limit cone in  $\mathcal C$ .

$$\mathsf{Mod}(\mathcal{T},\mathcal{C}) \coloneqq \infty\text{-category of models of }\mathcal{T} \mathsf{ in }\mathcal{C}$$
 
$$\mathsf{Mod}(\mathcal{T}) \coloneqq \infty\text{-category of models of }\mathcal{T} \mathsf{ in }\mathcal{S}$$

#### Limit ∞-sketches

A **limit**  $\infty$ -sketch (Joyal 2008)  $\mathcal{T} = (\mathcal{K}, \mathfrak{L})$  is a small  $\infty$ -category  $\mathcal{K}$  equip with a set  $\mathfrak{L}$  of cones.

Let  $\mathcal C$  be a complete  $\infty$ -category. A functor  $F:\mathcal K\to\mathcal C$  is a **model** of a limit  $\infty$ -sketch  $\mathcal T=(\mathcal K,\mathfrak L)$  in  $\mathcal C$  if it sends each cone in  $\mathfrak L$  to a limit cone in  $\mathcal C$ .

$$\mathsf{Mod}(\mathcal{T},\mathcal{C}) \coloneqq \infty\text{-category of models of }\mathcal{T} \mathsf{ in }\mathcal{C}$$
 
$$\mathsf{Mod}(\mathcal{T}) \coloneqq \infty\text{-category of models of }\mathcal{T} \mathsf{ in }\mathcal{S}$$

We say that an  $\infty$ -category is **limit**  $\infty$ -sketchable (or essentially  $\infty$ -algebraic) if it is equivalent to the  $\infty$ -category of models of some limit  $\infty$ -sketch.

An  $\infty$ -algebraic theory (or  $\infty$ -Lawvere theory) is a small  $\infty$ -category with finite products. A **model** (or **algebra**) for an  $\infty$ -algebraic theory  $\mathcal A$  is a functor  $\mathcal A \to \mathcal S$  that preserves products.

An  $\infty$ -algebraic theory (or  $\infty$ -Lawvere theory) is a small  $\infty$ -category with finite products. A **model** (or **algebra**) for an  $\infty$ -algebraic theory  $\mathcal A$  is a functor  $\mathcal A \to \mathcal S$  that preserves products.

Any  $\infty$ -algebraic theory is an  $\infty$ -sketch with only product cones

An  $\infty$ -algebraic theory (or  $\infty$ -Lawvere theory) is a small  $\infty$ -category with finite products. A **model** (or **algebra**) for an  $\infty$ -algebraic theory  $\mathcal A$  is a functor  $\mathcal A \to \mathcal S$  that preserves products.

Any  $\infty$ -algebraic theory is an  $\infty$ -sketch with only product cones

Example. Monoid objects ( $A_{\infty}$ -spaces), commutative monoid objects ( $E_{\infty}$ -spaces), group objects ( $\infty$ -groups), R-modules, . . .

An  $\infty$ -algebraic theory (or  $\infty$ -Lawvere theory) is a small  $\infty$ -category with finite products. A **model** (or **algebra**) for an  $\infty$ -algebraic theory  $\mathcal{A}$  is a functor  $\mathcal{A} \to \mathcal{S}$  that preserves products.

Any  $\infty$ -algebraic theory is an  $\infty$ -sketch with only product cones

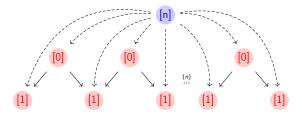
Example. Monoid objects ( $A_{\infty}$ -spaces), commutative monoid objects ( $E_{\infty}$ -spaces), group objects ( $\infty$ -groups), R-modules, . . .

Theorem (Rosicky 2007 and Lurie 2009)

The  $\infty$ -category of models of an  $\infty$ -algebraic theory is presentable.

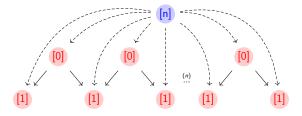
#### Examples: Internal precategories

Let  $\mathcal{C}$  be a complete  $\infty$ -category,  $\mathcal{A}$  be the nerve of  $\Delta^{\operatorname{op}}$ , and  $c_n$  be the cone with apex and diagram for all  $n \in \mathbb{N}$ :



# Examples: Internal precategories

Let C be a complete  $\infty$ -category, A be the nerve of  $\Delta^{op}$ , and  $c_n$  be the cone with apex and diagram for all  $n \in \mathbb{N}$ :

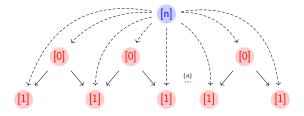


Then  $\mathcal{T}=(\mathcal{A},\{c_n\mid n\in\mathbb{N}\})$  is a limit  $\infty$ -sketch, and a model  $F:\mathcal{A}\to\mathcal{C}$  is a simplicial object in  $\mathcal{C}$  such that

$$F_n \xrightarrow{\sim} F_1 \times_{F_0} F_1 \times_{F_0} \cdots \times_{F_0} F_1.$$
 (Segal condition)

# Examples: Internal precategories

Let  $\mathcal{C}$  be a complete  $\infty$ -category,  $\mathcal{A}$  be the nerve of  $\Delta^{\operatorname{op}}$ , and  $c_n$  be the cone with apex and diagram for all  $n \in \mathbb{N}$ :



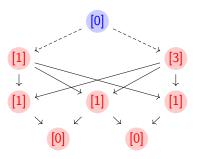
Then  $\mathcal{T}=(\mathcal{A},\{c_n\mid n\in\mathbb{N}\})$  is a limit  $\infty$ -sketch, and a model  $F:\mathcal{A}\to\mathcal{C}$  is a simplicial object in  $\mathcal{C}$  such that

$$F_n \stackrel{\sim}{\longrightarrow} F_1 \times_{F_0} F_1 \times_{F_0} \cdots \times_{F_0} F_1.$$
 (Segal condition)

 $\mathsf{Mod}(\mathcal{T},\mathcal{C}) \simeq \textbf{Internal precategories}$   $\mathsf{Mod}(\mathcal{T}) \simeq \textbf{Segal spaces}$ 

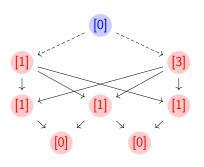
# Examples: Internal univalent categories

Let  $\mathcal{A}$  be as before,  $\mathfrak{L}_{\mathcal{S}}$  be the set of cones of the previous sketch, and d be the cone with apex and diagram:

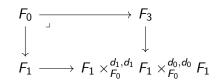


# Examples: Internal univalent categories

Let A be as before,  $\mathfrak{L}_S$  be the set of cones of the previous sketch, and d be the cone with apex and diagram:

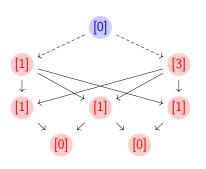


Then  $\mathcal{T} = (\mathcal{A}, \mathfrak{L}_S \cup \{d\})$  is a limit  $\infty$ -sketch, and a model  $F : \mathcal{A} \to \mathcal{C}$  is an internal precategory in  $\mathcal{C}$  such that

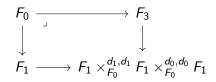


# Examples: Internal univalent categories

Let A be as before,  $\mathfrak{L}_S$  be the set of cones of the previous sketch, and d be the cone with apex and diagram:



Then  $\mathcal{T} = (\mathcal{A}, \mathfrak{L}_S \cup \{d\})$  is a limit  $\infty$ -sketch, and a model  $F : \mathcal{A} \to \mathcal{C}$  is an internal precategory in  $\mathcal{C}$  such that



 $\mathsf{Mod}(\mathcal{T},\mathcal{C}) \simeq$  Internal univalent categories  $\mathsf{Mod}(\mathcal{T}) \simeq$  Complete Segal spaces

#### Plan

Presentable ∞-categories

Limit ∞-sketches

Representation theorem

# Representation theorem

#### Theorem (M.)

An  $\infty$ -category is presentable  $\iff$  it is limit  $\infty$ -sketchable.

#### Corollary

The  $\infty$ -category of models of a limit  $\infty$ -sketch in a presentable  $\infty$ -category is presentable.

#### Future work

**Generalization:** A  $\infty$ -category is accessible if, and only if, it is equivalent to the  $\infty$ -category of models of an  $\infty$ -sketch.

A **sketch** is a limit sketch with a set of cocones which are sent to colimit cocones by any model.

#### Future work

- **Generalization:** A ∞-category is accessible if, and only if, it is equivalent to the  $\infty$ -category of models of an  $\infty$ -sketch.
  - A **sketch** is a limit sketch with a set of cocones which are sent to colimit cocones by any model.
- Accessibility, presentability, sketches, and representation theorem for ∞-cosmoi (Riehl and Verity 2022)
  - ⇒ **Model-independent** version of this presentation!

#### Future work

- **Generalization:** A  $\infty$ -category is accessible if, and only if, it is equivalent to the  $\infty$ -category of models of an  $\infty$ -sketch.
  - A **sketch** is a limit sketch with a set of cocones which are sent to colimit cocones by any model.
- Accessibility, presentability, sketches, and representation theorem for ∞-cosmoi (Riehl and Verity 2022)
  - → Model-independent version of this presentation!
- $\$  Formalize this work with a proof assistant which supports synthetic  $\infty$ -categories like rzk.

#### References

- Adamek, Jiří and Jiří Rosicky (1994). Locally Presentable and Accessible Categories. Vol. 189. Cambridge University Press.
- Joyal, André (2008). The Theory of Quasi-Categories and its Applications. Barcelona: Lectures at CRM.
- Lurie, Jacob (2009). *Higher Topos Theory*. Annals of Mathematics Studies 170. Princeton University Press.
- Riehl, Emily and Dominic Verity (2022). Elements of ∞-Category Theory. Vol. 194. Cambridge University Press.

# Thank you for listening!

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22.

#### LIMIT SKETCHES AND PRESENTABILITY

David Martínez Carpena

Carles Casacuberta Javier J. Gutiérrez

