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morphisms. Then, a category is:

B Small if it has a set of objects and sets of morphisms.

B Locally small if it has a (maybe large) collection of objects
and sets of morphisms.

B Large if it has (maybe large) collections of objects and
morphisms.

A (locally) presentable category is a locally small category which
contains a set S of small objects such that every object is a nice
colimit over S.

Examples. Set, Grp, sSet, ... Non example. Top
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Limit sketches

A limit sketch (Bastiani and Ehresmann 1972) is a pair (A, C) of a
small category A and a set of cones C over A.

Example. Let A be the small category generated by the square (a).
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Limit sketches

A limit sketch (Bastiani and Ehresmann 1972) is a pair (A, C) of a
small category A and a set of cones C over A.

A model of a limit sketch is a functor F : A — Set which sends
cones of C to limits of Set. A category is limit-sketchable if it is
equivalent to the category of models of some limit sketch.

Example. Let A be the small category generated by the square (a).

F

Let ¢ be the cone A————— Set

with ‘apex and diagram 0 -->1 A—s C
_ @ L = |7
Then (A, {c}) is a sketch €3 5 3 B_ D

A model F of the sketch (A, {c}) is a pullback of sets €

4/19



Representation theorem

Theorem (Adamek and Rosicky 1994)
The following are equivalent:
(i) Presentable categories.

(ii) Limit-sketchable categories.
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Theorem (Adamek and Rosicky 1994)
The following are equivalent:
(i) Presentable categories.

(ii) Limit-sketchable categories.

Goal

7L .
Presentable oo-categories ~ Limit-sketchable oco-categories
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Informal higher categories

A higher category has objects and:
& n-morphisms between (n — 1)-morphisms for all n > 1,

o Composition, identities and associativity of n-morphisms weakly
up to a (n + 1)-morphism for all n > 1.
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Informal higher categories

A higher category has objects and:
& n-morphisms between (n — 1)-morphisms for all n > 1,

o Composition, identities and associativity of n-morphisms weakly
up to a (n + 1)-morphism for all n > 1.

@ A higher category is an (0o, m)-category
>® if for any n > m, the n-morphisms are
Q A invertible up to a (n + 1)-morphism.

3
A N 2
> oco-category = (00, 1)-category

®
B > oo-groupoid = (0o, 0)-category
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Limits and colimits

Let C be an oo-category, and / be a small co-category. Given any
object x € Obj(C), the constant diagram Ax : | — C sends all
objects of / to x, and all higher morphisms to higher identities.

Let D : | — C be a diagram and y € Obj(C) be an object of C. A
natural transformation « : Ay = D exhibits y as a limit of D if,
for all x € Obj(C), « induces an equivalence

MapC(X>y) — Cones(D,x) = MapFun(l,C)(AX¢ D)

Cocones and colimit cocones are defined as cones and limit cones
in the opposite co-category.
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Let k denote a regular cardinal and C an co-category.

> An oo-category IC is x-filtered if, for every k-small co-category
I, every diagram D : | — K admits a cocone « : D = Ax.
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Accessibility

Let k denote a regular cardinal and C an co-category.

> An oo-category IC is x-filtered if, for every k-small co-category
I, every diagram D : | — K admits a cocone « : D = Ax.

> C admits x-filtered colimits if it admits /C-indexed colimits,
for every k-filtered oo-category K.

> An object x € Obj(C) is called k-compact if the mapping

space functor Map.(x, —) : C — S preserves r-filtered colimits.

An oo-category C is accessible if it is locally small and there is a
regular cardinal k such that:

& C admits k-filtered colimits.

o There is some essentially small sub-co-category of k-compact
objects which generates C under k-filtered colimits.
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Presentability

Definition
An oo-category is presentable if it is accessible and cocomplete.

Example

(a) The oo-category of homotopy types S is presentable.
b) Any oo-topos is presentable.

(b)
(c) The nerve of any presentable 1-category is presentable.
(d)

d) If A is a small co-category and C is a presentable co-category,

then Fun(A,C) is presentable.
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A limit oo-sketch (Joyal 2008) 7 = (K, £) is a small co-category
KC equip with a set £ of cones.

Let C be a complete co-category. A functor F : K — C is a model
of a limit co-sketch 7 = (K, £) in C if it sends each cone in £ to a
limit cone in C.
Mod(7,C) := oco-category of models of T in C
Mod(T') := oco-category of models of T in S

We say that an co-category is limit co-sketchable (or essentially
oo-algebraic) if it is equivalent to the oco-category of models of
some limit oo-sketch.
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Examples: oo-algebraic theories

An oco-algebraic theory (or co-Lawvere theory) is a small
oo-category with finite products. A model (or algebra) for an
oo-algebraic theory A is a functor A — S that preserves products.
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Examples: oo-algebraic theories

An oco-algebraic theory (or co-Lawvere theory) is a small
oo-category with finite products. A model (or algebra) for an
oo-algebraic theory A is a functor A — S that preserves products.

’ Any oo-algebraic theory is an co-sketch with only product cones

Example. Monoid objects (Ax-spaces), commutative monoid
objects (Eoo-spaces), group objects (oo-groups), R-modules, ...

Theorem (Rosicky 2007 and Lurie 2009)

The co-category of models of an oo-algebraic theory is presentable.
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Let C be a complete co-category, A be the nerve of A°P, and ¢, be
the cone with "apex and diagram for all n € N:

Then T = (A, {c, | n € N}) is a limit co-sketch, and a model
F : A — Cis a simplicial object in C such that

Fn — F1 X F1 Xy -+ X £, Fi. (Segal condition)

Mod(7,C) ~ Internal precategories
Mod(7) ~ Segal spaces
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Examples: Internal univalent categories

Let A be as before, £5 be the set of cones of the previous sketch,

and d be the cone with ‘apex and diagram :

[0] [0]
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Examples: Internal univalent categories

Let A be as before, £5 be the set of cones of the previous sketch,
and d be the cone with ‘apex and diagram :

Then T = (A, £5 U {d}) is a limit
- -~ oo-sketch, and a model F: A — C is
- ~u an internal precategory in C such that

L M ! Fo————— Fy
[1] [1] [1]
N s N s J, l

] ] FL—— xR RxRO R

Mod(7,C) ~ Internal univalent categories

Mod(7) ~ Complete Segal spaces

14 /19



Plan

Representation theorem

14/19



Representation theorem

Theorem (M.)

An oco-category is presentable <= it is limit co-sketchable.

Corollary

The co-category of models of a limit co-sketch in a presentable
oo-category is presentable.
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Future work

@ Generalization: A oo-category is accessible if, and only if, it is
equivalent to the oco-category of models of an oco-sketch.

A sketch is a limit sketch with a set of cocones which are sent
to colimit cocones by any model.

16/19



Future work

@ Generalization: A oo-category is accessible if, and only if, it is
equivalent to the oco-category of models of an oco-sketch.

A sketch is a limit sketch with a set of cocones which are sent
to colimit cocones by any model.

@ Accessibility, presentability, sketches, and representation
theorem for co-cosmoi (Riehl and Verity 2022)

—> Model-independent version of this presentation!

16/19



Future work

@ Generalization: A oo-category is accessible if, and only if, it is
equivalent to the oco-category of models of an oco-sketch.

A sketch is a limit sketch with a set of cocones which are sent
to colimit cocones by any model.

@ Accessibility, presentability, sketches, and representation
theorem for co-cosmoi (Riehl and Verity 2022)

—> Model-independent version of this presentation!

@ Formalize this work with a proof assistant which supports
synthetic co-categories like rzk.
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