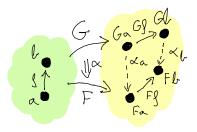
LIMIT SKETCHES AND PRESENTABILITY

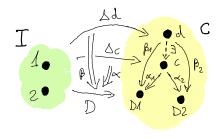
David Martínez Carpena

Carles Casacuberta Javier J. Gutiérrez

Categories

Functors and natural transformations





Cones and limits

- > Diagram $D: I \rightarrow C$
- > Cone $\alpha : \Delta c \Rightarrow D$
- > α is a limit if for all $d \in C$

 $\operatorname{Hom}(d, c) \cong \operatorname{Cones}(D, d)$

Presentability

A category has two types of collections: the objects, and the morphisms. Then, a category is:

- **b** Small if it has a set of objects and sets of morphisms.
- **b** Locally small if it has a (maybe large) collection of objects and sets of morphisms.
- **Large** if it has (maybe large) collections of objects and morphisms.

A **(locally) presentable** category is a locally small category which contains a set S of *small objects* such that every object is a *nice* colimit over S.

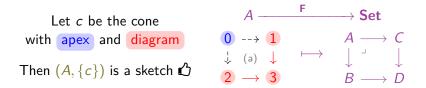
Examples. Set, Grp, sSet, ... Non example. Top

Limit sketches

A **limit sketch** (Bastiani and Ehresmann 1972) is a pair (A, C) of a small category A and a set of cones C over A.

A **model** of a limit sketch is a functor $F : A \rightarrow Set$ which sends cones of *C* to limits of **Set**. A category is **limit-sketchable** if it is equivalent to the category of models of some limit sketch.

Example. Let A be the small category generated by the square (a).



A model **F** of the sketch $(A, \{c\})$ is a pullback of sets \mathfrak{O}

Representation theorem

Theorem (Adamek and Rosicky 1994)

The following are equivalent:

- (i) Presentable categories.
- (ii) Limit-sketchable categories.

Goal Presentable ∞ -categories $\stackrel{?}{\simeq}$ Limit-sketchable ∞ -categories

 ${\sf Presentable} \ \infty {\rm -categories}$

 $\mathsf{Limit}\ \infty\text{-sketches}$

Representation theorem

 ${\sf Presentable} \ \infty {\rm -categories}$

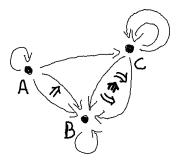
Limit ∞ -sketches

Representation theorem

Informal higher categories

A higher category has objects and:

- Solution m -morphisms between (n-1)-morphisms for all $n \ge 1$,
- Composition, identities and associativity of *n*-morphisms weakly up to a (n + 1)-morphism for all $n \ge 1$.



A higher category is an (∞, m) -category if for any n > m, the *n*-morphisms are invertible up to a (n + 1)-morphism.

- $ightarrow\infty ext{-category}\coloneqq(\infty,1) ext{-category}$
- > $\infty ext{-}\mathbf{groupoid} := (\infty, 0) ext{-}\mathsf{category}$

Limits and colimits

Let \mathcal{C} be an ∞ -category, and I be a small ∞ -category. Given any object $x \in \text{Obj}(\mathcal{C})$, the **constant diagram** $\Delta x : I \to \mathcal{C}$ sends all objects of I to x, and all higher morphisms to higher identities.

Let $D: I \to C$ be a diagram and $y \in Obj(C)$ be an object of C. A natural transformation $\alpha : \Delta y \Rightarrow D$ exhibits y as a limit of D if, for all $x \in Obj(C)$, α induces an equivalence

$$\operatorname{Map}_{\mathcal{C}}(x,y) \xrightarrow{\sim} \operatorname{Cones}(D,x) \coloneqq \operatorname{Map}_{\operatorname{Fun}(I,\mathcal{C})}(\Delta x,D).$$

Cocones and colimit cocones are defined as cones and limit cones in the opposite $\infty\text{-category}.$

Accessibility

Let κ denote a regular cardinal and ${\mathcal C}$ an $\infty\text{-category.}$

- > An ∞ -category \mathcal{K} is κ -filtered if, for every κ -small ∞ -category I, every diagram $D: I \to \mathcal{K}$ admits a cocone $\alpha: D \Rightarrow \Delta x$.
- > C admits κ -filtered colimits if it admits \mathcal{K} -indexed colimits, for every κ -filtered ∞ -category \mathcal{K} .
- An object x ∈ Obj(C) is called κ-compact if the mapping space functor Map_C(x, -) : C → S preserves κ-filtered colimits.

An ∞ -category C is **accessible** if it is locally small and there is a regular cardinal κ such that:

- $\ensuremath{\mathfrak{C}}$ admits κ -filtered colimits.
- Solution There is some essentially small sub- ∞ -category of κ -compact objects which generates C under κ -filtered colimits.

Presentability

Definition

An ∞ -category is **presentable** if it is accessible and cocomplete.

Example

- (a) The $\infty\text{-category}$ of homotopy types ${\mathcal S}$ is presentable.
- (b) Any ∞ -topos is presentable.
- (c) The nerve of any presentable 1-category is presentable.
- (d) If \mathcal{A} is a small ∞ -category and \mathcal{C} is a presentable ∞ -category, then Fun $(\mathcal{A}, \mathcal{C})$ is presentable.

Presentable ∞ -categories

 $\mathsf{Limit}\ \infty\text{-sketches}$

Representation theorem

$\mathsf{Limit}\ \infty\text{-sketches}$

A limit ∞ -sketch (Joyal 2008) $\mathcal{T} = (\mathcal{K}, \mathfrak{L})$ is a small ∞ -category \mathcal{K} equip with a set \mathfrak{L} of cones.

Let \mathcal{C} be a complete ∞ -category. A functor $F : \mathcal{K} \to \mathcal{C}$ is a **model** of a limit ∞ -sketch $\mathcal{T} = (\mathcal{K}, \mathfrak{L})$ in \mathcal{C} if it sends each cone in \mathfrak{L} to a limit cone in \mathcal{C} .

$$\begin{split} \mathsf{Mod}(\mathcal{T},\mathcal{C}) &\coloneqq \infty\text{-category of models of } \mathcal{T} \text{ in } \mathcal{C} \\ \mathsf{Mod}(\mathcal{T}) &\coloneqq \infty\text{-category of models of } \mathcal{T} \text{ in } \mathcal{S} \end{split}$$

We say that an ∞ -category is **limit** ∞ -**sketchable** (or **essentially** ∞ -**algebraic**) if it is equivalent to the ∞ -category of models of some limit ∞ -sketch.

Examples: ∞ -algebraic theories

An ∞ -algebraic theory (or ∞ -Lawvere theory) is a small ∞ -category with finite products. A model (or algebra) for an ∞ -algebraic theory \mathcal{A} is a functor $\mathcal{A} \to \mathcal{S}$ that preserves products.

Any $\infty\text{-algebraic}$ theory is an $\infty\text{-sketch}$ with only product cones

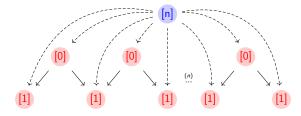
Example. Monoid objects (A_{∞} -spaces), commutative monoid objects (E_{∞} -spaces), group objects (∞ -groups), R-modules, ...

Theorem (Rosicky 2007 and Lurie 2009)

The ∞ -category of models of an ∞ -algebraic theory is presentable.

Examples: Internal precategories

Let C be a complete ∞ -category, A be the nerve of Δ^{op} , and c_n be the cone with apex and diagram for all $n \in \mathbb{N}$:

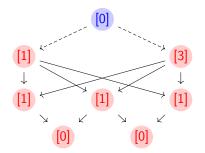


Then $\mathcal{T} = (\mathcal{A}, \{c_n \mid n \in \mathbb{N}\})$ is a limit ∞ -sketch, and a model $F : \mathcal{A} \to \mathcal{C}$ is a simplicial object in \mathcal{C} such that

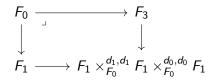
$$F_n \xrightarrow{\sim} F_1 \times_{F_0} F_1 \times_{F_0} \cdots \times_{F_0} F_1.$$
 (Segal condition)
 $Mod(\mathcal{T}, \mathcal{C}) \simeq$ Internal precategories
 $Mod(\mathcal{T}) \simeq$ Segal spaces

Examples: Internal univalent categories

Let \mathcal{A} be as before, \mathfrak{L}_S be the set of cones of the previous sketch, and d be the cone with apex and diagram:



Then $\mathcal{T} = (\mathcal{A}, \mathfrak{L}_S \cup \{d\})$ is a limit ∞ -sketch, and a model $F : \mathcal{A} \to \mathcal{C}$ is an internal precategory in \mathcal{C} such that



 $Mod(\mathcal{T}, \mathcal{C}) \simeq$ Internal univalent categories $Mod(\mathcal{T}) \simeq$ Complete Segal spaces Presentable ∞ -categories

Limit ∞ -sketches

Representation theorem

Representation theorem

Theorem (M.)

An ∞ -category is presentable \iff it is limit ∞ -sketchable.

Corollary

The ∞ -category of models of a limit ∞ -sketch in a presentable ∞ -category is presentable.

Future work

- **Generalization:** A ∞-category is accessible if, and only if, it is equivalent to the ∞-category of models of an ∞-sketch. A sketch is a limit sketch with a set of cocones which are sent
 - A **sketch** is a limit sketch with a set of cocones which are sent to colimit cocones by any model.
- ♀ Accessibility, presentability, sketches, and representation theorem for ∞-cosmoi (Riehl and Verity 2022)

 \implies **Model-independent** version of this presentation!

♀ Formalize this work with a proof assistant which supports synthetic ∞-categories like rzk.

References

Adamek, Jiří and Jiří Rosicky (1994). Locally Presentable and Accessible Categories. Vol. 189. Cambridge University Press.

- Joyal, André (2008). The Theory of Quasi-Categories and its Applications. Barcelona: Lectures at CRM.
- Lurie, Jacob (2009). Higher Topos Theory. Annals of Mathematics Studies 170. Princeton University Press.
- Riehl, Emily and Dominic Verity (2022). Elements of ∞-Category Theory. Vol. 194. Cambridge University Press.

Thank you for listening!

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22.

LIMIT SKETCHES AND PRESENTABILITY

David Martínez Carpena

Carles Casacuberta Javier J. Gutiérrez

