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Abstract. These notes introduce the notion of infinity topos as an accessible left exact
localization of the ∞-category of presheaves over a small ∞-category. To that end, we
review the basics of higher categories in the model of quasicategories.

1. Higher categories via quasicategories

In higher category theory, the main objects of study are∞-categories, which are composed
not only of objects and morphisms between objects, but also of n-morphisms between
(n− 1)-morphisms for all n ≥ 1. Additionally, the composition and identity are weak up to a
higher morphism. In particular, we are interested in studying (∞, 1)-categories, from now on
denoted simply as ∞-categories, which also have weakly invertible n-morphisms for all n ≥ 2.
If a ∞-categories also has weakly invertible 1-morphisms, it will be called an ∞-groupoid.

Historically, there have been many definitions of ∞-categories [1], and each one is called
a model. In this section, we present the model of infinity categories as quasicategories in
the category of simplicial sets sSet, as introduced by Joyal [3] and Lurie [4]. The theory
presented follows the notes from Rezk [7] and the wiki of Lurie [5]. A short introduction to
the category of simplicial sets is included in Appendix A, and all the constructions of this
section have been sum up in a table format at Appendix B.

Let X be a simplicial set, k ∈ N, and i : Λnk ↪→ ∆n be the canonical horn inclusion. We say
that X has the k-th horn extension property if for every n ∈ N and every map f : Λnk → X,
there exists a map f̃ : Λnk → X making the following diagram commute:

Λnk X

∆n

i

f

f̃

Definition 1.1. A simplicial set is:

(i) A quasicategory (or weak Kan complex ) if it has the k-th horn extension property
for all 0 < k < n (only the inner horns). Denote its subcategory as qCat ⊂ sSet.

(ii) A Kan complex if it has the k-th horn extension property for all 0 ≤ k ≤ n (all the
horns). Denote its subcategory as Kan ⊂ sSet.

Observe that by definition any Kan complex is a quasicategory. In this model of higher cat-
egories, the quasicategories model ∞-categories, and the Kan complexes model ∞-groupoids.

Example 1.2. For any topological space X, the singular complex Sing(X) is a Kan complex.
On the other hand, the nerve N : Cat→ sSet sends each category to a quasicategory.

For the rest of this section, let C,D be quasicategories, and x, y, z, t ∈ C0. Define the
collection of objects of C as Obj(C) := C0, and the collection of morphisms (or 1-morphisms)
of C as Mor(C) := C1. In particular, the collection of morphisms between two fixed objects
x and y is defined as HomC(x, y) := {f ∈ C1 idx = d0(f) and y = d1(f)}, with identities
idx := s0(x) ∈ HomC(x, x). Alternatively, f ∈ HomC(x, y) can also be denoted by f : x→ y.
Similarly, the n-simplices of C will correspond to n-morphisms of C as viewed as ∞-category.
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A functor between two quasicategories is a map of simplicial sets between them. Because
sSet is a cartesian closed category, there is an exponential simplicial set

Map(C,D) := HomsSet(C ×∆•,D).

If D is a quasicategory, then Map(C,D) is also a quasicategory, modeling the ∞-category of
∞-functors between C and D. Then, the collection of functors between C and D is Map0(C,D),
and the collection of natural transformations is Map1(C,D).

The composition in quasicategories is not a function like in ordinary category theory,
instead it is a relation between three morphisms, and it will only be associative and unital
up to a 2-morphism:

Definition 1.3. Let f : x → y, g : y → z, and h : x → z. Then h is a witness of the
composition (or composite) of f and g if there exist a 2-morphism σ ∈ C2 such that

y

x z

f

h

g

σ

By the definition of quasicategory, for every composable pair (f, g) there exists some
witness of the composition h. The weak associativity and weak identity properties can be
studied in terms of an internal concept of "homotopy" in a quasicategory:

Definition 1.4. Let f : x→ y and g : x→ y. We say that there is a homotopy between f
and g (or that f and g are homotopic), denoted f ∼ g, if there exists σ ∈ C2 such that

y

x y

f

g

idy

σ

In fact, homotopy is an equivalence relation thanks to C being a quasicategory. Because
composition and homotopy are compatible, it is well-defined to denote the homotopy class of
composites as [g] ◦ [f ]. Then, for all f : x→ y, g : y → z, h : z → t, the following properties
follow directly:

• Weak identity: [f ] ◦ [idx] = [f ] = [idy] ◦ [f ].
• Weak associativity: ([f ] ◦ [g]) ◦ [h] = [f ] ◦ ([g] ◦ [h]).

Hence, to any quasicategory C there is an associated homotopy category hC with objects C0
and morphisms between any two objects HomhC(x, y) = HomC(x, y)/∼.

Definition 1.5. A morphism f : x → y is an isomorphism if its image in the homotopy
category [f ] is an isomorphism in the usual sense of category theory.

As expected, between two objects of a quasicategory there is more structure than just the
set of morphisms. In fact, there is an ∞-groupoid between each pair of objects, that is, a
Kan complex, which can be realized by the following construction:

Definition 1.6. The mapping space C(x, y) between two objects x and y is the simplicial
set defined by the pullback

C(x, y) Map(∆1, C)

{(x, y)} C × C

π
y

where π is the composition of the restriction Map(∆1, C)→ Map(∂∆1, C) with the isomor-
phism Map(∂∆1, C) ∼= C × C. It can be shown that C(x, y) is always a Kan complex.

On the other hand, adjunctions can be generalized to the setting of quasicategories using
the characterization of by the unit and the counit:
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Definition 1.7. Let F : C → D and G : D → C be functors. We say that F is a left adjoint
of G (or that G is a right adjoint of F ), if there exists natural transformations η : idC ⇒ G◦F
and ε : F ◦G⇒ idD such that the following diagrams commute up to 2-morphism:

F ◦G ◦ F G = idC ◦G G ◦ idD = G

F = F ◦ idC idD ◦F = F G ◦ F ◦G
(idF ,η) (ε,idF )

idF

(η,idG) (idG,ε)

idG

Definition 1.8. A functor F : C → D is:
(i) Fully faithful if, for all objects x, y ∈ C, F induces a functorial weak equivalence of

Kan complexes
αx,y : C(x, y)

'−→ D(F (x), F (y)).

(ii) Essentially surjective if the induced functor of the homotopy categories hF : hC → hD
is essentially surjective.

(iii) A categorical equivalence if it is both fully faithful and essentially surjective.

(iv) A localization of C if it has a fully faithful right adjoint functor i : D ↪→ C.

Definition 1.9. Let K be any simplicial set, y ∈ C0 an object, F : K → C any functor and
y : K → C a constant functor which sends all K to y. Then:

(i) A natural transformation α : y ⇒ F exhibits y as a limit of F if α induces a
homotopy equivalence of Kan complexes

C(x, y) −→ Map(K, C)(x, F ).

(ii) A natural transformation β : F ⇒ y exhibits y as a colimit of F if β induces a
homotopy equivalence of Kan complexes

C(y, z) −→ Map(K, C)(F, z).

The usual definition for preservation of limits and colimits follow from the previous
construction. In addition, a limit or colimit is called finite if the diagram simplicial set K is
finite. Hence, a functor G : C → D is left exact if it preserves finite limits.

2. Infinity topoi as localizations

The higher categorical version of a topos was developed by Toën and Vezzosi [9] (as
Segal topos), Rezk [8] (as model topos) and Lurie [4] (as ∞-topos), all three presenting
equivalent ∞-categories. The goal of this section is defining ∞-topoi as a particular class of
presentable ∞-categories which also carry extra structure. Recall that any model category
has an underlying ∞-category (as seen in [4]). Recently, Pavlov [6] has proven that the
∞-category of combinatorial model categories is equivalent to the ∞-category of presentable
∞-categories. All these relations can be summed up in the following diagram:

Model
Categories -categories  

Model topos    -topoi

Combinatorial 

Model Categories


Presentable 

-categories

Figure 1. Relation between model categories, ∞-categories and ∞-topoi.
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As proven by Bergner [2], there is a model of higher categories in the category of simplicially
enriched categories, denoted sCat, where the ∞-categories correspond to categories enriched
in Kan complexes. Consider the subcategory of all Kan complexes Kan, it is in particular
enriched in Kan complexes if we consider the mapping spaces Map, hence Kan ∈ sCat.
In addition, the homotopy coherent nerve functor Nhc : sCat → sSet realizes a Quillen
equivalence, and sends any category enriched in Kan complexes to a quasicategory. Therefore,
there exists a quasicategory S := Nhc(Kan) which corresponds to the quasicategory of all
∞-grupoids. Then, the quasicategory of ∞-presheaves on C is by definition

PSh∞(S) := Map(Cop,S).

Let κ denote a regular cardinal. To formalize the theory of presentable ∞-categories first
we need to introduce several technical concepts:

• A κ-small simplicial set is a simplicial set with less than κ non-degenerate simplices.
• C admits κ-filtered colimits if every diagram F : K → C indexed by a κ-small
simplicial set K admits a point y ∈ C0 and a natural transformation β : F ⇒ y.
Furthermore, a functor G : C → D preserves κ-filtered colimits if sends the κ-filtered
colimits of C to colimits in D.

• C is essentially small if there is a regular cardinal κ such that there exists a κ-small
quasicategory C′ and a categorical equivalence C′ → C.

• C is locally small if for all objects x, y ∈ C0 the mapping space C(x, y) is essentially
small.

• If C is a quasicategory with κ-filtered colimits, then an object x ∈ C is called κ-compact
if the mapping space functor C(x,−) : C −→ S preserves κ-filtered colimits.

• A quasicategory C is accessible if there is a regular cardinal κ such that:
– C is locally small.
– C admits κ-small filtered colimits
– The full subcategory Cκ ⊂ C of κ-compact objects is essentially small.
– Cκ generates C under small, κ-filtered colimits.

Furthermore, a functor F : C → D is accessible if C is an accessible quasicategory
and there is a regular cardinal κ such that F preserves κ-small filtered colimits.

Definition 2.1. A quasicategory C is (locally) presentable if C is accessible and has all small
colimits.

Theorem 2.2. A quasicategory C is presentable if, and only if, there exists an accessible
localization of the category of presheaves on a small quasicategory K, i.e., there are two
adjoint functors

C PSh∞(K)
L

i

a

where i is fully faithful and accessible.

Finally, the following definition generalizes the usual definition of 1-topos replacing Set
with the quasicategory of ∞-groupoids S:

Definition 2.3. An ∞-topos H is a quasicategory together with an accessible left exact
localization of the category of presheaves on a small quasicategory K, i.e., there are two
adjoint functors

H PSh∞(K)
L

i

a

where i is fully faithful and accessible, and L is left exact.

Then, comparing the definition of∞-topos with Theorem 2.2, it is obvious that all∞-topos
are presentable quasicategories, and, in fact, the following characterization holds:

Theorem 2.4. A quasicategory H is a ∞-topos if, and only if, it is a presentable quasicate-
gory and the localization from Theorem 2.2 is left exact.
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Appendix A. Simplicial Sets

Definition A.1. The simplex category ∆ has as objects the sets [n] := {0, 1, . . . , n} for all
n ∈ N, and as morphisms the non-decreasing set functions [n]→ [m] for all n,m ∈ N.

Definition A.2. A simplicial set is a presheaf on ∆, i.e., a functor from ∆op to Set. The
simplicial sets together with the natural transformations between them form the category of
simplicial sets, denoted by sSet := Fun(∆op,Set).

Any simplicial set X has a set for each [n], denoted X[n] or Xn. In the simplex category
there are two special types of morphisms: the injections δni : [n− 1]→ [n] and the surjections
σni : [n+ 1]→ [n], both defined for every n ∈ N and every 0 ≤ i ≤ n by

δni (j) =

{
j if j < i

j + 1 if j ≥ i
σni (j) =

{
j if j ≤ i
j − 1 if j > i

Because any simplicial set X is a functor, these morphisms induce functions, called faces
dni := X(δni ) : Xn → Xn−1 and degeneracies sni := X(σni ) : Xn → Xn+1. Furthermore, every
morphism in the simplex category can be expressed as a composition of surjections and
injections.

From the properties of the injections and surjections, we can derive the following simplicial
identities, that all simplicial set have to satisfy:

dn−1
i ◦ dnj = dn−1

j−1 ◦ d
n
i if i < j

dn+1
i ◦ snj =


sn−1
j−1 ◦ dni if i < j

idXn
if i = j or i = j + 1

sn−1
j ◦ dni−1 if i > j + 1

sn+1
i ◦ snj = sn+1

j+1 ◦ s
n
i if i ≤ j

Therefore, a simplicial set is determined by the sets {Xn}n∈N together with the faces and
degeneracies maps satisfying the simplicial identities.

Figure 2. A simplicial set X : ∆op → Set, from nLab wiki.

Example A.3. Some of the most well-known examples are:
(i) The standard n-simplex is the simplicial set defined by ∆n := Hom∆(−, [n]). By the

Yoneda lemma, for each simplicial set X and each n ∈ N, we have

Xn
∼= HomsSet(Hom∆(−, [n]), X) = HomsSet(∆

n, X).

(ii) The boundary of ∆n, denoted ∂∆n, is defined as the subset of all maps of ∆n which
are not surjective.

(iii) The k-th horn Λnk is the sub-simplicial-set of ∆n obtained from removing the k-th
face. The horns with 0 < k < n are usually called inner horns, and the ones with
k = 0 or k = n are the outer horns.
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Appendix B. Summary of the model of quasicategories

Let C,D be quasicategories, and x, y, z, t ∈ C0.

Higher categorical concept Definition in quasicategories

Objects Obj(C) C0

1-morphisms Mor(C) C1

n-morphisms Cn

1-morphisms x→ y
(or HomC(x, y)) between x and y {f ∈ C1 | x = d0(f) and y = d1(f)}

∞-functors Map(C,D)
between C and D

HomsSet(C ×∆•,D)

f : x→ y and g : x→ y
are homotopic f ∼ g ∃σ ∈ C2 s.t.

y

x y

f

g

idy

σ

h : x→ z is a witness
of the composition of
f : x→ y and g : y → z

∃σ ∈ C2 s.t.
y

x z

f

h

g

σ

Homotopy category hC Objects C0 and morphisms
HomhC(x, y) = HomC(x, y)/∼

f : x→ y is an isomorphism [f ] is an isomorphism in hC

Mapping space C(x, y)
between x and y

C(x, y) Map(∆1, C)

{(x, y)} C × C

π
y

F : C → D is a left adjoint
of G : D → C

∃ η : idC ⇒ G ◦ F and ε : F ◦G⇒ idD
s.t. [ε ◦ idF ] ◦ [idF ◦ η] = [idF ]
and [idG ◦ ε] ◦ [η ◦ idG] = [idG]

F : C → D is fully faithful ∀x, y ∈ C, αx,y : C(x, y)
'→ D(F (x), F (y))

F : C → D is essentially surjective ∀ y ∈ D0, ∃x ∈ C0 s.t. F (x) ∼= y

F : C → D is a categorical equivalence Fully faithful and essentially surjective.

L : C → D is a localization of C L has a fully faithful right
adjoint functor i : D ↪→ C

α : y ⇒ F exhibits y as
a limit of F : K → C

α induces a weak equivalence
C(x, y)→ Map(K, C)(x, F )

β : F ⇒ y exhibits y as
a colimit of F : K → C

β induces a weak equivalence
C(y, z)→ Map(K, C)(F, z)
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