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In these notes, we will present an introduction to hypercommutative algebras. This structure
was discovered by Dijkgraaf, Verlinde and Verlinde [DVV91], and can be found with different
names and small variations, like Witten-Dijkgraaf-Verlinde-Verlinde algebras, formal Frobe-
nius manifolds, genus zero reduction of Gromov-Witten theories or genus zero cohomological
field theories. The hypercommutative algebra structure plays a crucial role in mathematical
physics because it describes the algebraic structure of quantum cohomology of varieties.

1 Operad of moduli spaces

In this section, we want to present the topological and geometrical structures underlying the
hypercommutative algebras. To that end, we will define moduli spaces, its compactification,
and the operadic structure found in the compactified ones of genus zero.

The moduli space Mg,n is the space of isomorphism classes of complex smooth projective
curves of genus g with n distinct marked points. We are mainly interested in the case of
genus zero, whereM0,n is an (n− 3)-dimensional smooth variety.

An explicit definition of the caseM0,n is easy to find. Observe that the only complex curve of
genus zero is the Riemann sphere, which can be thought as the complex projective line CP1,
and its group of isomorphisms is PGL2(C). Therefore, for every n ≥ 3,M0,n is equivalent
to the configuration space of n distinct labeled punctures on the complex projective line
CP1, considered up to the natural action of PGL2(C). In addition, this definition can be
simplified by the following isomorphism:

M0,n = {(p1, . . . , pn) ∈ (CP1)n | pi 6= pj for i 6= j} /PGL2(C)

∼= {(z1, . . . , zn−3) ∈ (C \ {0, 1})n−3 | zi 6= zj for i 6= j}

Unfortunately,Mg,n is not a complete variety, because singular curves can appear as the
limit of smooth curves. Deligne, Mumford and Knudsen [DM69; Knu83] constructed a
compactification ofMg,n, by enlarging the moduli problem to include certain singular curves.

A stable curve C with n marked points is a complex projective curve such that:

• The only singularities are double points.

• There is n distinct smooth marked points p1, . . . , pn ∈ C.

• There are no continuous automorphisms of C fixing the marked and double points.

Then, the compactified moduli space Mg,n is the space of isomorphism classes of stable
curves of genus g with n distinct marked points. In the case of genus zero,M0,n is actually
a projective variety.

Example 1.1. • M0,3 is a point.

• M0,4
∼= CP1 \ {0, 1,∞} andM0,4

∼= CP1.

• M0,n+1 is inductively constructed as a blow up ofM0,n × CP1.

The moduli spaces of genus zero can be arranged as a topological operadM0,•+1: define the
space of n-ary operations asM0,n+1 for any n ≥ 2, considering the first marked point as the
output, and the operadic composition ◦i :M0,n+1 ⊗M0,m+1 →M0,n+m as the gluing of
stable curves at marked points.

1



Figure 1: Example of composition of the operadM0,•+1.

2 Hypercommutative algebra

In this section we present hypercommutative algebras, their main properties, and its Koszul
dual, the gravity algebras.

Definition 2.1. A hypercommutative algebra is a chain complex A with a sequence of totally
symmetric n-ary operations (x1, . . . , xn) : A⊗n → A of degree 2(n − 2) for any n ≥ 2,
satisfying the following generalized associativity condition∑

S1tS2={1,...,k}

(−1)ε((a, b, xS1
), c, xS2

) =
∑

S1tS2={1,...,k}

(−1)ε(a, (b, c, xS1
), xS2

) (1)

where k ≥ 0, a, b, c, x1, . . . , xk ∈ A, ε is the Koszul sign rule, and xS denotes xs1 , . . . , xsm for
a finite set S = {s1, . . . , sm}.

Example 2.2. Consider the generalized associativity conditions for small k values:

• If k = 0, the relation (a, (b, c)) = ((a, b), c) is equivalent to the associativity of the binary
operation. Therefore, the binary operation is graded commutative and associative.

• If k = 1, the relation is

(a, (b, c, d)) + (a, (b, c), d) = ((a, b), c, d) + (−1)|c||d|((a, b, d), c).

One way of thinking about the operations in a hypercommutative algebra is to view them as
the Taylor coefficients of a formal deformation of the commutative product (a, b). In any
hypercommutative algebra there is a family of products {(a, b)x}x∈A such that

(a, b)x :=
∑
n≥0

1

n!
(a, b, x, . . . , x) for all x ∈ A.

Then, the Equation 1 is equivalent to the associativity of the products (a, b)x for all x ∈ A.
This characterization explains the relation between hypercommutative algebras and Frobenius
manifolds.

Define the HyperCom operad as the one generated by an n-ary operation of degree 2(n− 2)
for any n ≥ 2, and with the relations imposed by Equation 1. Then, by definition the algebras
over the HyperCom operad are hypercommutative algebras.

Proposition 2.3. [KM94; Get95] The operad H•(M0,•+1) formed by the homology of
the compactified moduli space of genus 0 is isomorphic to the operad HyperCom encoding
hypercommutative algebras.
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In the study of algebraic operads, Koszul duality (see [LV12, Chapter 7] for a detailed
introduction) plays a central role. The main examples of Koszul duality are the associative
operad, which is its own dual, and the operads Comm and Lie, which are dual to each other.
As we have seen, a hypercommutative operad has a commutative binary product, but with
extra structure. In the rest of this section we want to introduce the Koszul dual to the
hypercommutative operad, which will be some kind of Lie operad with extra structure:

Definition 2.4. A gravity algebra is a chain complex A with a sequence of graded antisym-
metric n-ary operations [x1, . . . , xn] : A⊗n → A of degree 2− n for any n ≥ 2, satisfying the
following relations

∑
1≤i<j≤k

(−1)ε[[ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak, b1, . . . , bl] =

{
[[a1, . . . , ak], b1, . . . , bl] l > 0

0 l = 0

where k > 2, l ≥ 0, a1, . . . , ak, b1, . . . , bl ∈ A, and ε is the Koszul sign rule.

In this case, with k = 3 and l = 0, we obtain the Jacobi relation for [a, b]. As before, we can
define the gravity operad Grav as the one generated by those operations and relations.

Observe that the moduli spacesM0,•+1 have a similar structure toM0,•+1, but the gluing
along one point of two smooth curves does not produce a smooth curve. However, this gluing
endows an operadic structure to the suspension of the homology:

Proposition 2.5. [Get94] The operad sH•(M0,•+1) formed by the suspension of the homol-
ogy of the moduli space of genus 0 is isomorphic to the operad Grav encoding gravity algebras,
where

sH•(M0,•+1) :=

{∑3−n
(∧maxC{1,...,n})⊗H•(M0,•+1) n ≥ 3,

0 n < 3.

Using Proposition 2.3, Proposition 2.5 and the mixed Hodge structure of the moduli spaces
of curves, Getzler proved:

Theorem 2.6. [Get95] The operads HyperCom and Grav are Koszul dual to each other.

The existence of this Koszul duality is the main ingredient in the proof of the next section,
and enables the relation of hypercommutative operads with BV operads.

3 Relation between HyperCom and BV operads

In this final section, we want to relate hypercommutative algebras with a homotopy quotient
of BV-algebras by the BV-operator. This problem has a topological origin, because the two
operads are homologies of some topological operads: the moduli spaces for hypercommutative
algebras, and in the case of BV-operads, a homotopy quotient of the framed discs operad by
the circle action. Because the two operads are formal [Gui+05], we can restrict ourselves to
the study of the homologies.

First, we need to define what we mean for a homotopy quotient. Consider the category
of topological spaces Top and the category of functors TopS1

(category of spaces with an
S1-action), with S1 considered as a category of one object and a morphism for each element
of S1. There exists a functor TrivS

1

: Top→ TopS1

defined by sending a topological space
X to itself with the trivial action of S1. Using Left Kan extension, we obtain an adjoint
functor •/S1 to TrivS

1

as a certain colimit. This adjoint coincides with the quotient of a
space X by its action of S1 when the action is free.
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Consider the usual model structure in Top, where the fibrant replacement is trivial because
all objects are fibrant, and the equivariant model structure on TopS1

, with the cofibrant
replacement • × ES1. The previous adjunction lifts to one in the homotopy categories,
defined as follows:

(• × ES1)/S1 : Ho(TopS1

) � Ho(Top) : TrivS
1

Then, the existence of this adjunction is equivalent to a natural isomorphism for allX ∈ TopS1

and all Y ∈ Top

Ho(Top)((X × ES1)/S1, Y ) ∼= Ho(TopS1

)(X,TrivS
1

(Y ))

Therefore, we define a model for the homotopy quotient by S1 as a functor (X ×ES1)/S1

such that is left adjoint to TrivS
1

in the homotopy categories. Observe that we could also
have taken any other cofibrant replacement in TopS1

to obtain a different model of the
homotopy quotient.

The same construction can be carried in the category of dg-operads dgOp instead of
topological spaces. The cohomology ring of the circle is the Grassman algebra K[∆] with one
odd generator of degree −1 such that ∆2 = 0. Then, TopS1

its replaced by the category
dgOp∆ of dg-operads with a chosen embedding of the Grassman algebra K[∆]. Similar to
the previous case, any dg-operad Q admits a trivial map K[∆]→ Q with ∆→ 0, defining
the functor Triv∆ : dgOp→ dgOp∆.

Definition 3.1. The homotopy quotient by ∆ is a functor •/∆ : dgOp∆ → dgOp such that
for any pair P ∈ dgOp∆ and Q ∈ dgOp, there exists a natural equivalence

Ho(dgOp)((LP )/∆, Q) ∼= Ho(dgOp∆)(P, Triv∆(RY )),

where R (resp. L) is the fibrant (resp. cofibrant) replacement of dgOp (resp. dgOp∆).

Our goal is to define a map θ : (HyperCom, 0) → (BV/∆, d). First, we want to define
the image of the map (θ for each generator mn ∈ HyperCom(n), which by Proposition 2.3
represents the fundamental cycle [M0,n+1]. The idea is to define the image θ(mn) as a sum
of all possible rooted trees of n-leaves, where the nodes with n > 2 inputs are replaced by
iterations of the binary multiplication operation from BV/∆. For the rest of the details
(see [KMS13]) we need to choose a specific model of the homotopy quotient.

Theorem 3.2. [KMS13] The map θ defined on generators extends to a quasi-isomorphism
of operads θ : (HyperCom, 0)→ (BV/∆, d).

Proof. The proof involves the construction of a zigzag of quasi-isomorphisms between
(HyperCom, 0) and (BV/∆, d), using the gravity and the Gerstenhaber operads. Then,
careful diagram chasing of that zigzag of quasi-isomorphisms allows us to proof that θ is in
fact a quasi-isomorphism.

From the zigzag of quasi-isomorphisms and the fact that HyperCom has trivial differential,
we know that the cohomology of (BV/∆, d) is isomorphic to (HyperCom, 0). Connecting
with the rest of the seminar, it can be shown that there is a Frobenius manifold structure
on the cohomology of Calabi-Yau manifolds. By the previous result, we know that if the
BV-algebra associated to a Calabi-Yau manifold has a trivialization of the BV-operator, then
its cohomology will have a natural hypercommutative algebra structure, and therefore a
Frobenious manifold structure.
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