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Abstract

In higher category theory, ∞-groupoids are ∞-categories whose morphisms are
weakly invertible at all orders. Every topological space has an associated ∞-groupoid,
named its fundamental ∞-groupoid, which encodes the information of higher paths over
the space. The statement that every space can be recovered up to homotopy from its
fundamental ∞-groupoid is known as Grothendieck’s homotopy hypothesis. In this talk
we present the model of ∞-categories based on topologically enriched categories, and
discuss the homotopy hypothesis in this context.

1 Introduction

Notation: An∞-category is a (∞, 1)-category, an∞-grupoid is a (∞, 0)-category, and Top
is the category of weakly Hausdorff compactly generated spaces.

The first occurrence of a general homotopy hypothesis was in a letter from Grothendieck to
Quillen, which was published as an introduction to Grothendieck’s “Pursuing Stacks” [Gro83].
The goal of this book is to study homotopy theory via category theory, higher types and stacks.
The original statement of the homotopy hypothesis from Grothendieck is the following:

Any homotopy type is "essentially the same" as an∞-grupoid up to∞-equivalence.
(On page 5 of [Gro83])

If we choose a model of ∞-grupoids, the homotopy hypothesis applied to this model can be
from a tautology to a non-trivial theorem. Following the techniques from [Lur09], we can
show that (combinatorial simplicial) model categories encode the ∞-category of ∞-grupoids.
Then, the "essentially the same" part of the homotopy hypothesis is equivalent to showing
a zigzag of Quillen equivalences between the model structures of topological spaces and
∞-grupoids.

The goal of this talk is to prove the homotopy hypothesis for tCat (which is equivalent to
sCat as seen in the previous talk) with a zigzag of Quillen equivalences from Top to a model
structure over the ∞-grupoids in the tCat model.

2 Model of ∞-categories as topological categories

As introduced in the previous talk, tCat denotes the category of all topological categories
with the Bergner model structure [Ber08; Amr13]. It can be seen that each topological
category models an ∞-category: the n-morphisms are defined as (n− 1)-homotopies in the
spaces of morphisms. The properties of topological homotopies (weak associativity, unit and
invertibility) hold for all n > 1, and we have strict associativity and unit but not invertibility
for 1-morphisms. Then, the following definition is natural

Definition 2.1. A topological category C is an ∞-groupoid if π0 C is a groupoid. The
subcategory of ∞-groupoids will be denoted ∞-Grpd.

Recall that for any cocomplete category C and small category S and any functor F : S → C,
the formal nerve NF and the formal realization | · |F are the pair of adjoint functors (| · |F ,NF )
defined by the following commutative diagram with Y being the Yoneda embedding:
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The relation between Top to ∞-Grpd arises from a chain of adjunctions between those
categories, where each adjunction is defined as a formal nerve and realization or an enriched
version of one.

Top sSetQ sSetJ sCat tCat

|·|

Sing

k!

Nhc

C

Sing

|·|

k!

31 24

1 The singular simplicial set Sing and the geometric realization | · | are defined as formal
nerve and realization by the cosimplicial object ∆• : ∆ → Top where ∆n is the
standard topological simplex. In addition, it is well-known that those functors form a
Quillen equivalence.

2 As seen in the previous talk, any Quillen equivalence can be lifted to an enriched one.
This is done with the previous Quillen equivalence between Top and sSet.

3 The homotopy coherent nerve Nhc and the simplicial path C are defined as formal nerve
and realization by the cosimplicial object ∆hc : ∆→ sCat which sends any [n] ∈ ∆ to
the simplicial category (FU)[n] as defined in the previous talk [Rie11]. Equivalently,
∆hc sends any [n] ∈ ∆ to the simplicial category with {0, 1, . . . , n} as set of objects
and morphisms:

∆hc[n](i, j) =


∅ j < i

∗ i = j

(∆[1])(j−i−1) j > i

As proven by Lurie [Lur09], (C,Nhc) form a Quillen equivalence.

4 The functors k! and k! are defined as formal nerve and realization by the cosimplicial
object k : ∆ → sSet which sends any [n] ∈ ∆ to the nerve of the groupoid freely
generated by [n] as a category. As shown in [JT07, Theorem 1.19], (k!, k

!) form a
Quillen adjunction betwen sSetQ and sSetJ , but not a Quillen equivalence.

In fact, (k!, k
!) can be seen as a localization adjunction between quasi-categories and Kan

complexes:

Proposition 2.2. [JT07, Proposition 1.16 and 1.20]. There is a functor J from quasi-
categories to Kan complexes, defined as J(X) being the largest sub-Kan complex of a quasi-
category X. In addition, the following are true:

(i) The natural map k!(X)→ J(X) is a trivial fibration for every quasi-category X.

(ii) The natural map X → k!(X) is a monic weak equivalence for every simplicial set X.

Then, k! is weak equivalent to the inclusion of Kan complexes in quasi-categories and k! is
weak equivalent to J , thus sending quasi-categories to their largest sub-Kan complex.

Theorem 2.3. [JT07, Proposition 1.15].The Quillen model structure on sSet is a left
Bousfield localization of the Joyal model structure on sSet. Thus, every Joyal’s weak
equivalence is a Quillen’s weak equivalence. Furthermore, a map between Kan complexes is a
Quillen’s weak equivalence if and only if it is a Joyal’s weak equivalence.
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3 The homotopy hypothesis for topological categories

As previously stated, our final goal is to prove the homotopy hypothesis for topological
categories. Let ψ = k!◦Nhc ◦ Sing and θ = |·|◦C ◦k!. It can be seen that these functors restrict
to a Quillen equivalence between sSetQ and ∞-Grpd, with a suitable model structure over
∞-Grpd. Then, the following diagram is a zigzag of Quillen equivalences:

Top sSetQ ∞-Grpd.
|·|

Sing ψ

θ

Before proving the homotopy hypothesis, we need to check that θ and ψ are well-defined
as functors between sSetQ and ∞-Grpd. This fact is equivalent to the following lemma,
which is proved in [Amr11], [McG20] and [Mar21].

Lemma 3.1. (i) For every simplicial set X, θ(X) is an ∞-groupoid.

(ii) For every ∞-groupoid C, ψ(C) is a Kan complex.

On the other hand, the model structure on∞-Grpd needs to be defined. First, the following
lemma ensures the compatibility of the weak equivalences of tCat and ∞-Grpd.

Lemma 3.2. [Amr11, Lemma 4.3]. Let F : C → D be a map of ∞-groupoids. Then F is a
weak equivalence of topological categories if and only if ψ(F ) is a weak equivalence in sSetQ.

Then, we can define the model structure on ∞-Grpd as the one transferred from sSetQ by
the adjunction of θ and ψ. The proof of this theorem can be found in [McG20] and [Mar21].

Theorem 3.3. The adjunction θ : sSetQ � ∞-Grpd : ψ induces a model structure on
∞-Grpd where:

• A morphism F : C → D of ∞-groupoids is a weak equivalence (fibration) if

ψ(F ) : ψ(C)→ ψ(D)

is a weak equivalence (fibration) in sSetQ.

• The cofibrations are the morphisms with the LLP with respect to any trivial fibration.

Using that θ and ψ are well-defined and the model structure over ∞-Grpd compatible
with the one in tCat, the homotopy hypothesis for the model of topological categories is
equivalent to the following theorem:

Theorem 3.4 (Grothendieck homotopy hypothesis for tCat). The Quillen adjunction

θ : sSetQ �∞-Grpd : ψ

is a Quillen equivalence. Therefore, there is a zigzag of Quillen equivalences between Top
and ∞-Grpd.

Idea of the proof. The full proof can be found in [Amr11, Theorem 4.6] or [Mar21, Theorem
2.3.4]. The proof has three main steps:

1. Prove that Nhc ◦ Sing :∞-Grpd→ sSetQ is well-defined.

2. Show that the induced functor Ho(∞-Grpd) → Ho(sSetQ) is an equivalence (i.e.
fully faithful and essentially surjective).

3. Using properties of k! and the previous result, prove that ψ also induces an equivalence.
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