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Abstract

In higher category theory, co-groupoids are co-categories whose morphisms are
weakly invertible at all orders. Every topological space has an associated oo-groupoid,
named its fundamental co-groupoid, which encodes the information of higher paths over
the space. The statement that every space can be recovered up to homotopy from its
fundamental oo-groupoid is known as Grothendieck’s homotopy hypothesis. In this talk
we present the model of co-categories based on topologically enriched categories, and
discuss the homotopy hypothesis in this context.

1 Introduction

Notation: An co-category is a (oo, 1)-category, an co-grupoid is a (0o, 0)-category, and Top
is the category of weakly Hausdorff compactly generated spaces.

The first occurrence of a general homotopy hypothesis was in a letter from Grothendieck to
Quillen, which was published as an introduction to Grothendieck’s “Pursuing Stacks” [Gro83].
The goal of this book is to study homotopy theory via category theory, higher types and stacks.
The original statement of the homotopy hypothesis from Grothendieck is the following:

Any homotopy type is "essentially the same" as an co-grupoid up to co-equivalence.
(On page 5 of [Gro83|)

If we choose a model of co-grupoids, the homotopy hypothesis applied to this model can be
from a tautology to a non-trivial theorem. Following the techniques from [Lur09], we can
show that (combinatorial simplicial) model categories encode the oo-category of co-grupoids.
Then, the "essentially the same" part of the homotopy hypothesis is equivalent to showing
a zigzag of Quillen equivalences between the model structures of topological spaces and
oo-grupoids.

The goal of this talk is to prove the homotopy hypothesis for tCat (which is equivalent to
sCat as seen in the previous talk) with a zigzag of Quillen equivalences from Top to a model
structure over the co-grupoids in the tCat model.

2 Model of co-categories as topological categories

As introduced in the previous talk, tCat denotes the category of all topological categories
with the Bergner model structure [Ber08; Amrl3]. It can be seen that each topological
category models an co-category: the n-morphisms are defined as (n — 1)-homotopies in the
spaces of morphisms. The properties of topological homotopies (weak associativity, unit and
invertibility) hold for all n > 1, and we have strict associativity and unit but not invertibility
for 1-morphisms. Then, the following definition is natural

Definition 2.1. A topological category C is an oo-groupoid if m9C is a groupoid. The
subcategory of co-groupoids will be denoted co-Grpd.

Recall that for any cocomplete category C and small category S and any functor F': S — C,
the formal nerve N and the formal realization |-|p are the pair of adjoint functors (|- |z, Ng)
defined by the following commutative diagram with Y being the Yoneda embedding;:
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The relation between Top to co-Grpd arises from a chain of adjunctions between those
categories, where each adjunction is defined as a formal nerve and realization or an enriched
version of one.

Il ky ¢ ||
N T T T
Top @® sSetg @ sSet; ® sCat @ tCat
~__x K~ K~ K~
Sing k' Nhpe Sing

The singular simplicial set Sing and the geometric realization | - | are defined as formal
nerve and realization by the cosimplicial object A® : A — Top where A™ is the
standard topological simplex. In addition, it is well-known that those functors form a
Quillen equivalence.

As seen in the previous talk, any Quillen equivalence can be lifted to an enriched one.
This is done with the previous Quillen equivalence between Top and sSet.

The homotopy coherent nerve Ny and the simplicial path € are defined as formal nerve
and realization by the cosimplicial object A™¢: A — sCat which sends any [n] € A to
the simplicial category (FU)[n] as defined in the previous talk [Riell]. Equivalently,
A"¢ sends any [n] € A to the simplicial category with {0,1,...,n} as set of objects
and morphisms:

0 j<i
A[n(i, 5) = | * i=J
(AYU=D >
As proven by Lurie [Lur09], (€, Np.) form a Quillen equivalence.

The functors k' and & are defined as formal nerve and realization by the cosimplicial
object k : A — sSet which sends any [n] € A to the nerve of the groupoid freely
generated by [n] as a category. As shown in [JT07, Theorem 1.19], (ki, k') form a
Quillen adjunction betwen sSetg and sSet ;, but not a Quillen equivalence.

In fact, (ki, k') can be seen as a localization adjunction between quasi-categories and Kan
complexes:

Proposition 2.2. [JT07, Proposition 1.16 and 1.20]|. There is a functor J from quasi-
categories to Kan complezes, defined as J(X) being the largest sub-Kan complex of a quasi-
category X . In addition, the following are true:

(i) The natural map k'(X) — J(X) is a trivial fibration for every quasi-category X .
(ii) The natural map X — ki(X) is a monic weak equivalence for every simplicial set X.

Then, % is weak equivalent to the inclusion of Kan complexes in quasi-categories and k' is
weak equivalent to J, thus sending quasi-categories to their largest sub-Kan complex.

Theorem 2.3. [JT07, Proposition 1.15]. The Quillen model structure on sSet is a left
Bousfield localization of the Joyal model structure on sSet. Thus, every Joyal’s weak
equivalence is a Quillen’s weak equivalence. Furthermore, a map between Kan complexes is a
Quillen’s weak equivalence if and only if it is a Joyal’s weak equivalence.



3 The homotopy hypothesis for topological categories

As previously stated, our final goal is to prove the homotopy hypothesis for topological
categories. Let 1) = k'oNj.0Sing and @ = |-|o€ oky. It can be seen that these functors restrict
to a Quillen equivalence between sSetg and oco-Grpd, with a suitable model structure over
0o-Grpd. Then, the following diagram is a zigzag of Quillen equivalences:

Il 9
Top Si—T sSetg ? oo-Grpd.

Before proving the homotopy hypothesis, we need to check that 6 and ¥ are well-defined
as functors between sSetg and co-Grpd. This fact is equivalent to the following lemma,
which is proved in [Amrll], [McG20] and [Mar21].

Lemma 3.1. (i) For every simplicial set X, (X) is an oco-groupoid.
(ii) For every co-groupoid C, (C) is a Kan complex.

On the other hand, the model structure on co-Grpd needs to be defined. First, the following
lemma ensures the compatibility of the weak equivalences of tCat and oco-Grpd.

Lemma 3.2. [Amrll, Lemma 4.3]. Let F : C — D be a map of co-groupoids. Then F is a
weak equivalence of topological categories if and only if Y(F') is a weak equivalence in sSetq.

Then, we can define the model structure on co-Grpd as the one transferred from sSetg by
the adjunction of 6 and 1. The proof of this theorem can be found in [McG20] and [Mar21].

Theorem 3.3. The adjunction 0 : sSetg = co-Grpd : ¢ induces a model structure on
0o-Grpd where:

e A morphism F : C — D of co-groupoids is a weak equivalence (fibration) if
O(F) = 9(C) = (D)
is a weak equivalence (fibration) in sSetg.

e The cofibrations are the morphisms with the LLP with respect to any trivial fibration.

Using that 6 and 1 are well-defined and the model structure over co-Grpd compatible
with the one in tCat, the homotopy hypothesis for the model of topological categories is
equivalent to the following theorem:

Theorem 3.4 (Grothendieck homotopy hypothesis for tCat). The Quillen adjunction
0 : sSetg = co-Grpd : ¢

is a Quillen equivalence. Therefore, there is a zigzag of Quillen equivalences between Top
and co-Grpd.

Idea of the proof. The full proof can be found in [Amrll, Theorem 4.6] or [Mar21, Theorem
2.3.4]. The proof has three main steps:
1. Prove that Nj. o Sing : co-Grpd — sSet( is well-defined.

2. Show that the induced functor Ho(co-Grpd) — Ho(sSetg) is an equivalence (i.e.
fully faithful and essentially surjective).

3. Using properties of k' and the previous result, prove that ¢ also induces an equivalence.
O
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